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Abstract—Proton beam radiotherapy is a method of
cancer treatment that uses proton beams to irradiate
cancerous tissue, while minimizing doses to healthy tissue.
In order to guarantee that the prescribed radiation dose
is delivered to the tumor and ensure that healthy tissue
is spared, many researchers have suggested verifying the
treatment delivery through the use of real-time imaging
using methods which can image prompt gamma rays that
are emitted along the beam’s path through the patient
such as Compton cameras (CC). However, because of
limitations of the CC, their images are noisy and unusable
for verifying proton treatment delivery. We provide a
detailed description of a deep residual fully connected
neural network that is capable of classifying and improving
measured CC data with an increase in the fraction of
usable data by up to 72% and allows for improved image
reconstruction across the full range of clinical treatment
delivery conditions.

Proton beam therapy was first proposed as a cancer
treatment in [1]. To a first order approximation, the
radiation dose delivered by a proton beam is inversely
proportional to the kinetic energy of the particles within
the beam. The beam’s particles lose kinetic energy as
they traverse the patient, with the amount of radiation
delivered by the beam being low at its entry point, and
gradually rising until the beam nears the end of its range,
at which point the delivered dose rapidly reaches its
maximum as the protons come to a rest after depositing
all of their energy [2]. This point of maximum dose
is called the “Bragg peak” and little to no radiation is
delivered beyond the Bragg peak. These dose delivery
characteristics of proton beam therapy give it a distinct
advantage over other radiotherapy treatments such as X-
ray therapy. By exploiting the finite range of the proton
beam, medical practitioners can confine the radiation of
the beam to areas solely affected by cancerous tumors
allowing vital organs beyond the tumor to be spared [3].

While these characteristics of proton beam therapy
would in principle greatly reduce the negative side effects
of radiation therapy, there are still practical limitations.
In current practice the patient’s body is imaged before
undergoing treatment in order to map the position of

the tumor. The course of proton beam radiation therapy
itself then follows, and consists of multiple treatment
sessions over a period of one to five weeks. The relative
size and position of the tumor within the patient’s body
may change as surrounding tissues swell, shrink, and
shift over the full course of radiation therapy. These
changes to internal anatomy as well as small differences
in patient setup from day-to-day, can cause changes to
the proton beam range as well as the position of the
proton Bragg peak within the patient. In order to ensure
the tumor always receives the prescribed radiation dose
in the presence of these beam range uncertainties, safety
margins must be added around the treated tumor volume
to ensure it is always fully irradiated by the proton Bragg
peak [3]. These safety margins cause healthy tissues
around the tumor to be intentionally irradiated reducing
the dose sparing potential of proton beam therapy. Thus
there is a large need to detect, manage, and reduce the
small shifts in proton beam range that may occur due to
anatomical changes and daily setup variations that occur
over the course of treatment.

To help identify and mitigate these beam range vari-
ations, many researchers are investigating methods to
image the beam in real time as it passes through the
patient’s body [3], [4], [5]. One proposed method for
real time imaging is by detecting prompt gamma (PG)
rays that are emitted along the path of the beam using
a Compton camera. A Compton camera is a multi-stage
detector that uses the principles of Compton scattering,
originally detailed in [6], to produce 2D and 3D images
of gamma ray and x-ray sources [7], [8].

As the proton beam passes through the body, protons
in the beam interact with atoms in the body, exciting the
nuclei of these atoms causing them to emit characteristic
PG rays. These PG rays exit the body and can interact
within the Compton camera. The Compton camera can
record the energy e deposited and the (x, y, z) coordi-
nates of these PG interactions within the active detection
modules of the camera. These detection modules have a
finite detection and signal readout time-resolution, and
thus all interactions occurring within a single readout
cycle of the camera are recorded by the camera as
occurring simultaneously (at a single point in time).
This means that the order in which the PG interactions
detected within a single readout cycle are recorded is
arbitrary and may be written in the wrong order of
occurrence (misordered) in the final recorded datafile.
The collection of all PG interactions (referred to as
gamma “scatters”) that occur within a single detector
module within the camera during a single data readout
cycle is referred to as a PG “event” [9].

The camera records single scatter events in which PG



2

only scatters once in the camera modules and multi-
scatter events in which a PG scatters two or three times
in the camera modules. Multi-scatter events can be clas-
sified into five categories: true triples, double-to-triples
(DtoT), true doubles, false doubles, and false triples.
False triple events consist of three interactions within
the same data readout window of the camera which
all originate from separate PG rays. Similarly, false
double events contain two interactions originating from
separate PG rays. A DtoT event contains two interactions
corresponding to the same PG ray, and one interaction
from a different PG ray. The two remaining categories
of events are true double and true triple events which
consist of two and three arbitrarily ordered interactions
from a single PG, respectively.

The presence of these false and DtoT events cause
problems with image reconstruction methods because
these methods assume that all interactions in an event
correspond to the same PG ray. Additionally, the mis-
ordering of the individual interactions, as recorded by
the camera, will cause the event to be reconstructed
incorrectly and produce noise in the image. In order to
correct the issues caused by the camera’s deficiencies
false events should be removed from the data entirely,
DtoT events should have their non-corresponding inter-
action removed with the remaining interactions of the
true double scatter correctly ordered, and the true triples
which are misordered must be correctly ordered.

A classical method for reordering interactions already
exists, as described in [10], [11], but it does not have
the ability to detect DtoT or false events. Moreover, its
ability to predict the correct interaction ordering of mis-
ordered events was shown in [12] to be less effective than
machine learning based methods or Bayesian methods.
However, machine learning ensemble methods like Ran-
dom Forests have shown poor results for classifying the
interaction order of true triple events [13]. Additionally,
preliminary hyperparameter tests using support vector
machines (SVM) with a multitude of configurations have
yielded no effective SVM configuration which can ade-
quately identify the correct interaction order of double
and triple scatter events. This has lead us to explore
the usage of neural networks (NN) which, in general,
represent repeated non-linear data transformations that
map an input record to an expected outcome [14].

Shallow networks like the ones seen in [12] and
[15] used 1 layer and 2 layer NNs respectively to
perform simple classifications of simulated PG data
or experimental data measured under ideal detection
conditions that do not represent the irradiation conditions
encountered during clinical proton beam radiotherapy.
The shallow network in [12] was designed to only

classify true triples and showed superior performance
to the classical methods for predicting event interaction
ordering. The shallow network in [15] was a binary
classification network that simply determined what event
data are true events and should be used for reconstruction
or which are false events which not should be used for
reconstruction.

By contrast to these shallow networks in [12] and [15],
we study the idea of leveraging a deep residual fully
connected NN which consists of hundreds of layers to
identify correct PG event types and interaction orderings.
We also implement a fully connected residual block to
prevent back propagation stagnation typically associated
with deep NNs. In this work, our NN specializes in
determining whether a given triple is: 1) a true triple
with one of six possible orderings, 2) a DtoT where a
single scatter is incorrectly attached to a true double
of arbitrary ordering yielding six possible interaction
orderings, 3) a false triple which is three single scatters
misreported as a true triple by the Compton camera.
This gives us 13 possible classes that may occur in our
measured Compton camera data.

RESULTS

Neural Network Training and Validation Performance

Our initial studies in [16] showed that our general
NN configuration is capable of identifying both true and
false triple scatters. In this study, we have expanded
the complexity of the network to now consist of 64
residual blocks with 8 fully connected layers per block
yielding a total of 512 hidden layers. Each layer had
256 neurons per layer, a 45% dropout rate, and used
leaky ReLU activation. This more complex network, as
shown in these results, is able to handle more complex
triple scatter datasets, that include true and false events,
as well as DotT and false triples.

In Figure 1, we show the training and validation
plots for our NN trained over 18,000 epochs using a
learning rate scheduler that prescribes successive drops
from 10−3 to 10−6. We see that the accuracy starts out
very low with an initial accuracy of roughly 8%. For
the next several thousand epochs the accuracy increases
rapidly as the network overcomes the poor accuracy
enforced by the dropout behavior. Just as the training
and validation accuracy start to plateau, there is sudden
spike in accuracy at 1,500 epochs as the learning rate is
tightened from 10−3 to 10−4. At 10,652 epochs, there
is a small jump in accuracy with a large reduction in
the epoch-to-epoch accuracy range as the learning rate
is tightened from 10−4 to 10−5. Lastly, there is a small
jump in accuracy at 13,580 epochs as the learning rate
is tightened for the final time from 10−5 to 10−6.
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Fig. 1. Training and validation plot for our NN over 18,000 epochs.
The input data is divided into a training set and validation set which
consist of 80% and 20% of the input data, respectively.

An interesting observation is that the validation ac-
curacy is considerably higher than the training accuracy.
This is most likely because Keras passes the training data
through the network with dropout enabled but the vali-
dation data is passed through the network with dropout
disabled. This allows the validation to be performed
using all of the available neurons in the network as
opposed to the reduced number of neurons used during
training. The increased number of neurons present during
validation most likely allows the network to perform
better on validation data.

Prompt Gamma Event Classification

Figures 2 (a), 2 (b), 2 (c) are confusion matrices
generated by our NN classifying the modeled 20,000
MU/min (Monitor Units per minute), 100kMU/min, and
180kMU/min dose rate data for the modeled 150MeV
beam, respectively. The first column (on the left side)
of the confusion matrix is the input event class and
the remaining columns are the percentages of the total
respective input event class that is predicted to be the
event class at the top of each column. Each cells is
colored according to the maximum accuracy percentage
(dark green) present in the entire confusion matrix.

We notice several general observations which hold
for all confusion matrices in Figure 2. We see that the
dominant (highest percentage) event classification for

each row is the input event class itself, indicating that the
NN is correctly predicting the event type and ordering
for a large percentage of all event classifications. The
second highest prediction percentage for most classes
of triple (classes 123, 132, 213, 231, 312, 321) are the
DtoT classes with the same interaction ordering. This
means that the network correctly identifies the first two
interactions the best and, at times, struggles to correctly
identify whether the third interaction truly belongs in the
triple or not.

For the six DtoT classes (124, 214, 134, 314, 234,
324) we see that the second highest classification result
for each DtoT event is actually a reverse ordering of
the true double ordering. The NN can determine which
of the three interactions does not belong to the true
double scatter event but, after doing so, is unsure of
the ordering two interactions. The third most likely
network prediction for several DtoT classes is as a true
triple. The two true interactions (of the DtoT’s true
double) are correctly ordered, but the third interaction,
an improperly coupled single, is incorrectly identified
as the third interaction of the true triple. This improper
identification of these DtoTs as valid triples creates
events that would produce noise in the reconstructed
image. The other DtoTs have false events as their third
highest predicted class which is considered data loss but
poses no detriment to reconstruction.

Any improper classification of false data as a true
event means that we are increasing noise in our final
reconstructed images. The dominant NN prediction for
the false event class is also the false event class which
is the preferred outcome. The majority of the incorrect
classifications for the false data is into the six DtoT
classes which means that false doubles will be produced
when one of the interactions is predicted to be an
incorrectly coupled single scatter and removed. Lastly,
very few false events are incorrectly identified as a true
triples class by the NN. This indicates that the network
can easily distinguish between true and false events.

Prompt Gamma Image Analysis Based on Neural Net-
work Classification

To illustrate the effect that network event classification
can have on the PG images produced from the camera
data, reconstructed PG images are shown in Figure 3
along with the ground truth images of the proton dose
deposition. In Figure 3, there are four rows of PG image
reconstructions. In the first row we see the actual dose
deposition by the proton beam, showing the characteris-
tic Bragg peak at the end of its range (near the center of
the image). This is because the Bragg peak is considered
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Neural Network Predicted Event Class
(a) 123 132 213 231 312 321 124 214 134 314 234 324 444
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123 77.3 3.2 1.4 2.1 2.7 1.6 6.9 0.5 0.2 0.0 2.9 0.8 0.4
132 2.8 77.5 2.0 1.5 2.3 2.5 0.3 0.0 6.5 0.4 1.0 2.9 0.3
213 1.4 2.6 77.7 2.8 1.6 2.2 0.6 6.4 3.3 1.1 0.1 0.0 0.2
231 2.9 1.7 2.8 78.4 2.9 1.6 0.1 0.2 0.8 2.5 5.5 0.5 0.2
312 2.7 1.2 1.5 2.2 79.8 2.3 3.1 1.2 0.5 5.3 0.0 0.2 0.1
321 1.5 2.7 3.1 1.7 3.2 78.4 0.9 2.5 0.0 0.2 0.5 5.1 0.3
124 3.5 0.2 0.6 0.1 2.8 1.8 74.0 8.3 0.4 0.4 0.4 1.3 6.2
214 0.4 0.3 3.7 0.3 1.5 2.8 7.3 76.8 0.3 1.2 0.4 0.3 4.8
134 0.4 3.8 3.0 2.1 0.4 0.1 0.5 0.4 75.8 7.4 1.1 0.7 4.1
314 0.0 0.6 1.8 4.0 5.4 0.3 0.8 0.8 6.2 73.8 0.1 0.8 5.2
234 2.4 1.5 0.1 5.7 0.2 0.9 0.2 0.7 1.3 0.4 72.9 7.8 5.9
324 1.1 3.2 0.2 0.5 0.2 5.2 1.3 0.3 0.6 0.7 6.4 75.9 4.4
444 0.3 1.3 0.3 0.9 0.0 0.3 4.7 5.0 1.9 3.4 5.0 6.0 70.8

Neural Network Predicted Event Class
(b) 123 132 213 231 312 321 124 214 134 314 234 324 444
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123 79.1 2.3 1.5 2.2 1.7 1.5 5.6 0.7 0.1 0.0 3.9 1.0 0.2
132 2.6 76.0 2.0 1.7 2.8 1.9 0.1 0.0 7.7 0.4 1.2 3.5 0.1
213 1.7 2.5 76.4 3.7 2.0 2.0 0.4 5.5 3.9 1.2 0.3 0.1 0.2
231 3.0 1.4 2.8 80.7 2.2 1.7 0.1 0.2 1.3 1.8 4.4 0.1 0.2
312 1.8 0.8 2.1 2.0 82.4 2.6 2.2 0.5 0.2 4.7 0.1 0.2 0.2
321 1.7 2.6 3.7 1.5 3.5 76.5 1.2 3.9 0.0 0.4 0.2 4.4 0.4
124 5.0 0.3 0.4 0.0 2.9 1.4 76.0 7.0 0.6 0.4 0.2 1.1 4.7
214 0.5 0.2 4.1 0.2 1.5 3.5 7.6 75.0 0.5 1.1 0.5 0.3 4.9
134 0.2 4.3 2.3 1.7 0.5 0.1 0.6 0.5 75.4 7.9 1.0 0.3 5.3
314 0.1 0.4 1.4 3.4 4.9 0.2 0.3 0.8 7.0 75.4 0.2 1.0 4.9
234 3.1 1.5 0.5 5.4 0.1 0.5 0.4 0.5 1.0 0.4 73.6 7.1 5.8
324 1.0 2.3 0.1 0.7 0.4 5.1 1.1 0.2 0.6 0.4 6.5 75.3 6.2
444 0.6 0.2 0.4 0.5 0.8 0.5 4.2 3.8 5.1 4.0 3.9 3.5 72.6

Neural Network Predicted Event Class
(c) 123 132 213 231 312 321 124 214 134 314 234 324 444

In
pu

t
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nt
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ss

123 74.5 5.0 2.2 2.2 2.9 1.7 6.7 0.5 0.0 0.0 2.9 1.4 0.0
132 2.2 77.4 1.9 1.2 2.2 1.9 0.0 0.0 6.2 0.5 1.0 4.6 1.0
213 0.7 2.2 77.6 3.1 1.2 1.7 0.5 8.7 3.1 1.0 0.2 0.0 0.0
231 2.4 1.9 3.9 76.6 3.9 1.7 0.2 0.5 0.5 2.4 5.1 0.7 0.2
312 2.7 1.7 1.0 1.9 80.2 2.9 2.7 1.0 0.2 5.1 0.2 0.0 0.5
321 1.4 2.2 3.6 1.7 3.1 79.0 1.4 3.4 0.0 0.0 0.5 3.6 0.0
124 3.8 0.3 0.3 0.2 2.3 1.9 76.4 6.9 0.6 0.4 0.4 1.0 5.5
214 0.8 0.1 3.6 0.4 1.5 3.2 6.6 76.9 0.3 0.9 0.2 0.5 5.1
134 0.2 4.8 2.7 1.4 0.9 0.1 0.5 0.4 75.9 7.5 1.3 0.6 3.7
314 0.1 0.1 1.0 3.2 6.0 0.4 0.3 1.0 7.1 74.4 0.4 0.6 5.5
234 3.3 1.1 0.3 4.2 0.3 0.9 0.2 0.5 0.7 0.4 75.6 6.9 5.6
324 1.7 2.9 0.1 0.5 0.3 5.4 1.5 0.2 0.3 0.2 7.4 73.1 6.4
444 0.3 0.7 0.3 0.6 0.4 0.3 4.6 3.9 4.1 4.5 5.1 4.3 70.8

Fig. 2. Confusion matrix for a fully connected network trained on triples, double to triples, and false data from a 150MeV beam for 18,000
epochs and tested on the MCDE model 150MeV (a) 20kMU/min, (b) 100kMU/min, (c) 180kMU/min beam. The 13 labels in the first column
are the input event class and the remaining 13 columns are the percentages of the input which were predicted to be the event class at the
top of column by the NN. Each cell is colored by accuracy relative to the largest percentage present in the entire confusion matrix.
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Fig. 3. The first row contains a reconstruction of the proton beam with a Bragg peak at the end of its range. The second, third, and fourth
rows are reconstructions of PG data recorded at 20 kMu/min, 100 kMU/min, and 180 kMU/min dose rates, respectively. The left column
uses PG data without using the NN classification for data correction, called the “uncleaned” data. The right column uses PG data after it
has been NN classified and corrected, called the “cleaned” data.

to be the ground truth or “best case scenario” for PG
image reconstruction. The remaining three rows in Fig-
ure 3 are reconstructions of three PG data recorded by the
camera for proton beam irradiation at clinical dose rates
of 20kMU/min, 100kMU/min, and 180kMU/min. The
images in the left column are the respective PG images
reconstructed with raw data prior to NN classification,
otherwise called the “uncleaned” data. The images in the
right column are the respective PG images reconstructed
with data after it has been corrected based on the NN
classifications, otherwise called the “cleaned” data. Since
each PG image is from data collected during delivery of
the same 150MeV proton beam they will have the same
position and range even though they are reconstructed
from data collected at different dose rates.

When we evaluate the uncleaned and cleaned data
it is clear that as the beam dose rate increases we
get a decrease in visual quality for the PG images,
with a reduced image signal with respect to the image
background. This loss of image contrast can be seen
in image CNR (Contrast-to-Noise Ratio) of 33, 23, and
10 for the uncleaned data images at 20 kMU/min, 100
kMU/min, and 180 kMU/min, respectively. However,
when the data is classified by the NN and corrected, the
CNR values improve to 41, 30, and 22 for the cleaned

data 20 kMU/min, 100 kMU/min, and 180 kMU/min,
respectively. The improved values in the cleaned data
correlate well to the improved visual appearance of the
beam in which the start point and end point are now
easily distinguishable at all three dose rates

DISCUSSION

We use a deep residual fully connected NN to de-
termine the proper ordering and coupling behavior of
Compton camera data. In many classification problems,
misclassifications are seen as a complete loss with no
benefits, but for our problem this is not entirely true.
Consider the fact that for our imaging problems we are
limited by the number of PGs that camera can measure
during the delivery of a single proton therapy treatment
session. For this reason, any opportunity that data can
be recovered must be seized, since it is not possible to
deliver more doses to a patient again if more data are
needed.

Consider the case of a triple classified as DtoT where
the single scatter interaction is thrown away and the
interactions of the recovered true double are correctly
ordered. This produces a valid true double which can still
be used for reconstruction. For instance, in Figure 2 (c),
the 213 class has a classification accuracy of 77.6%. This
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would normally imply that we have lost 22.4% of the
remaining 213 events. In reality, when a 213 is classified
as a 214, we still have a valid double. From Figure 2 (c),
we see that the 213 class was misclassified as a 214 with
8.7% of the time. This means that given a misordered
213 true triple, which is unusable for reconstruction, we
recover 86.3% of the input class and convert it into a
correctly ordered true triple or true double which are
then usable for reconstruction. When a DtoT is classified
as a false triple, this is a beneficial situation as we know
that it will be removed from the data so it cannot cause
noise in the reconstructed image. As for DtoTs which are
misordered, if the true double that is part of the DtoT is
properly identified, it is possible to pass it to a separate
doubles classification network so its order may still be
corrected as described in [17].

The addition of false triple classification to true triple
and DtoT classification required significantly more con-
figuration and training time. We believe this is because
false triples are similar to DtoTs, in that they both
contain falsely coupled single scatters. We believe simi-
larities between these event classes leads the network to
misclassify false triples as DtoT events. This could be
problematic since the false triples which are classified
as DtoTs would be converted to a (false) double which
would produce noise in the image if used for reconstruc-
tion. In principle if passed to a doubles classification
network, it could be identified as a false double and
removed.

From here it is important to discuss how the NN
is actually improving the data in a literal sense. Our
confusion matrices demonstrate how the NN performs
on each class in isolation but they do not illustrate
how the NN changes the balance of the data files. The
data produced by the Compton camera, in the context
of classes, is unbalanced and largely dependent on the
dose rate. As the dose rate increases from a clinical
minimum of 20kMU/min to a clinical maximum of
180kMU/min as outlined in [18], the number of true
triples decreases while the number of DtoTs and false
triples increases. At 180kMU/min the majority of the
data being detected is almost entirely DtoT and false
triples. Table I shows percentages, compiled from the
presented confusion matrices, of the measured PG data
that would be usable for image reconstruction before and
after NN event classification. For instance, if 100,000
triple events have been measured with our Compton
camera, at 180kMU/min dose rate, around 5,600 true
triples would be measured [18]. If we assume each of the
six possible interaction orderings are equally possible,
then only 936 are correctly ordered meaning only 0.9%
of all of the detected events can be used for recon-

TABLE I
GIVEN 100,000 PG SCATTERINGS DETECTED BY THE COMPTON

CAMERA AND THE RATE OF COMPTON CAMERA EVENT
MISDETECTION, WHAT PERCENTAGE OF THE DETECTED DATA IS
USABLE FOR PG IMAGE RECONSTRUCTION BEFORE AND AFTER

USING THE NN FOR EVENT CORRECTION AT VARYING DOSE
RATES.

% Usable data Improvement
Dose Rate Before After = After – Before
20kMU/min 7.9% 78.0% 70.1%

100kMU/min 1.8% 73.8% 72.0%
180kMU/min 0.9% 59.6% 58.7%

struction. If we were to use our NN for classifying and
correcting the event ordering, based on the percentages
in Figure 2 (c), then around 4,356 of the 5,600 true
triples will be usable for reconstruction. The remaining
94.4% of the measured events are DtoTs and false triples
[18]. Without the NN these events are passed directly
to the reconstruction process and produce noise in the
reconstructed images. After using the NN classification,
34,692 false triples would be removed and 34,544 DtoTs
are recovered as true properly ordered doubles (and used
for reconstruction). Before we used the NN, only 0.9% of
the data passed to the reconstruction method is actually
viable for reconstruction; after we use the NN and re-
move false events, recover true doubles from DtoTs, and
correctly order the interactions in all true events, 59.6%
of the remaining data is now viable for reconstruction,
an improvement of 58.7%. At the lower dose rates we
see even larger gains with 20kMU/min going from 7.9%
usable events to 78.0% usable events, an improvement of
70.1%, and 100kMU/min going from 1.8% usable event
to 73.8% usable events, an improvement of 72.0%.

The effect that the improved data quantity and quality
has on image reconstruction can be seen visually in
Figure 3. The large image background seen in the
uncleaned data images is almost completely removed by
the NN classification and data correction as can be seen
in the cleaned data images. More detailed results and
discussions about the impact of NN processing on the
use and viability of CC based imaging in clinical proton
radiotherapy are the focus of [19].

METHODS

Data Generation and Data Processing

Generating Data with a Monte-Carlo Model: Our
datasets were created using the Monte-Carlo plus De-
tector Effects (MCDE) modeling software, as described
in detail and validated against measured Prompt Gamma
data by [9]. In brief, the MCDE model consists of:
(1) a Monte-Carlo model, built using Geant4.10.4 [20],



7

is used to model the detection of prompt gammas by
a prototype Compton camera that are emitted from a
tissue equivalent plastic target (high density polyethylene
with r = 0.96g/cc for this study) during irradiation
with clinical proton beams (150MeV pencil beam used
in this study); and (2) the “detector effects” model
to process the Monte-Carlo data according to physical
characteristics (pixel size, energy uncertainty, charge
drift across the detectors) and the detection and read-
out timing characteristics (active charge collection time,
pixel readout time, and reset dead-time) of the camera.
The final MCDE output consists of a data file containing
the single, double, and triple scatter prompt gamma
events as they would have been recorded by the Compton
camera under the beam delivery conditions (irradiation
field size, beam intensity, and irradiation time) of the
modeled experiment.

Due to the nature of this model, we cannot simply
run once at a single dose rate and have enough data to
train a model. The first reason is that for any run, the
total number of events can range from several thousand
events to almost 150,000 events. The second reason
is that true triples, DtoT, and false events occur in
different proportions at different dose rates [9]. If we
run the model at a low clinical dose rate of 20kMU/min
then we will get significantly more true triples than
DtoT or false events. As the dose rate increases the
number of true triples goes down and the number of
DtoTs and false events goes up [21]. When we reach
the clinical maximum of 180kMU/min we see that the
data is primarily DtoTs and false events with very few
true triples. In order to obtain 140,000 events per class
(1.8 million events total) we had to combine events
across many different runs and dose rates. This process
does not affect our data integrity because the dose rate
has no impact on the physics of events; a true triple
which occurs at 20kMU/min is not conceptually different
from a true triple at 180kMU/min [9].

Events and Their Class Designations: Our triples
data consists of three categories: true triples, double-
to-triples (DtoT), and false triples. Each category has
the same number of interactions and elements per in-
teraction. These three categories provide a combined
total of 13 classes that are used for classifying our
data. Let each interaction be represented by 1, 2, or 3
for any given event. When a triple is correctly ordered
we call that a 123 event. When a triple is misordered
it is represented as 132, 213, 231, 312, or 321. All
possible classes can also be seen in Figure 4. To explain
the labelling system more, consider the 312 event from
Figure 4. In the 312 event, the data which should be
interaction 1, [e1, x1, y1, z1], shows up as interaction 2.

Similarly, [e2, x2, y2, z2] shows up as interaction 3 but
should be interaction 2. Lastly, [e3, x3, y3, z3] shows up
as interaction 1 but should be interaction 3. For DtoTs
one of the interactions is actually a single which was
incorrectly coupled to a double. When talking about
a double-to-triple we still have three interactions but
instead use 1, 2, or 4 as labels. A 124 event is a correctly
ordered double-to-triple where the last interaction is
a falsely coupled single. When a double-to-triple is
misordered, it is represented as 214, 134, 314, 234, or
324. For example, 314 means that the [e1, x1, y1, z1]
shows up as interaction 3, [e2, x2, y2, z2] shows up as
interaction 1, and a falsely coupled single shows up as
interaction 2. False triples are labelled as a 444 event and
all three interactions are actually falsely coupled singles.
The arrangement of the data for each class and their
respective interaction layouts can be seen in Figure 4.

Standardization and Normalization: In order to give
our network a better chance at learning we change our
data spread and distribution with sklearn preprocessing
objects [22].

Our data and problems come from Compton camera
detection issues related to interaction orderings. The fact
that all of the interactions are randomly ordered means
that like-columns such as energy or spatial coordinates
are not strictly independent. If an energy value could be
placed in e1, e2, or e3, then treating these columns as sep-
arate and independent misrepresents what the columns
mean. In order to properly address this, we standardize
and normalize like-columns as a single feature but train
on them as separate features. This is implemented by a
reshaping, otherwise referred to as “wrap”, of the data
such that we the x-, y-, z-coordinates of all interactions
form one column each. This can be mathematically
expressed as reshaping of a matrix E ∈ Rn×3f con-
taining n events with 3 interactions and f features per
interaction. For normalization, we reshape E such that
it becomes R ∈ R3n×f and then normalize by column.
To visualize this reshaping process, consider Figure 5,
where we have E ∈ R2×9. We know that E has 3 features
per interaction and that our new matrix R after reshaping
will be R ∈ R6×3. We choose to mutate the spatial coor-
dinates independently of the energy depositions. For the
spartial coordinates we use the sklearn MaxAbsScaler
to standardize them to the [-1, 1] range. Then we use the
sklearn PowerTransformer with the Yeo-Johnson
method to bring our energy deposition values closer to
a normal distribution. These data manipulators are then
saved using Python pickle for future usage.

After all of the data manipulation has been performed,
we compute the Euclidean distance δij for the ith and
jth interaction. We append δ12 to interaction 1, δ23 to
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Class Interaction 1 Interaction 2 Interaction 3
123 e1 x1 y1 z1 e2 x2 y2 z2 e3 x3 y3 z3
132 e1 x1 y1 z1 e3 x3 y3 z3 e2 x2 y2 z2
213 e2 x2 y2 z2 e1 x1 y1 z1 e3 x3 y3 z3
231 e2 x2 y2 z2 e3 x3 y3 z3 e1 x1 y1 z1
312 e3 x3 y3 z3 e1 x1 y1 z1 e2 x2 y2 z2
321 e3 x3 y3 z3 e2 x2 y2 z2 e1 x1 y1 z1
124 e1 x1 y1 z1 e2 x2 y2 z2 single
214 e2 x2 y2 z2 e1 x1 y1 z1 single
134 e1 x1 y1 z1 single e2 x2 y2 z2
314 e2 x2 y2 z2 single e1 x1 y1 z1
234 single e1 x1 y1 z1 e2 x2 y2 z2
324 single e2 x2 y2 z2 e1 x1 y1 z1
444 single single single

Fig. 4. The input class as the left column and the remaining columns contain the interaction data with subscripts for the correct interaction
number. The top row indicates the order the interaction data will be fed into the neural network.

E =

[
E11 E12 E13 E14 E15 E16 E17 E18 E19

E21 E22 E23 E24 E25 E26 E27 E28 E29

]
reshape→


E11 E12 E13

E14 E15 E16

E17 E18 E19

E21 E22 E23

E24 E25 E26

E27 E28 E29

 = R

Fig. 5. A demonstration of the data wrapping process performed by numpy.

interaction 2, and δ31 to interaction 3. Lastly we use
pandas to save our data as a CSV.

Neural Network Construction and Configuration

Fully Connected Residual Blocks: The network used
in the Results. is a deep fully connected neural network.
Neural networks, especially fully connected ones, break
down once they start becoming notably deep and com-
plex. One of the first problems is that the values start
to become very small during the forward propagation
process. This leads to zeros and nearly zero values
becoming more prominent as you go deeper and deeper.
A partial fix to this forward propagation issue is to use
Leaky ReLU (Rectified Linear Unit) over the traditional
ReLU [23]. Another fix is data normalization between
layers and before learning [24]. The second problem is
that accuracy starts to degrade after a certain point in
training despite no signs of training data memorization
[24]. This phenomenon is discussed more intimately in
[24] where they detail these effects. The major break-
through solution to this problem is also proposed in
[24] where they create ResNet, a network built from
“residual blocks”. We use their original implementation
of residual blocks as the basis for our fully connected

residual blocks. Consider an arbitrary record. We pass
it as an input to a small group of layers with their
own activators. The result of the layer digestion is then
concatenated with the original record. The concatenation
in our case, and the case of the original ResNet, is addi-
tion. This addition operation helps, through the forward
propagation process, keep input data to each block fresh.

The residual block method in [24] concatenates the
data before the activation function is applied. The second
version of ResNet, called ResNetV2, concatenates after
the activation function. The original residual blocks were
designed and implemented using convolutional layers
in an image classification network. We create residual
blocks using only fully connected layers with post-
activation concatenation for the classification of prompt
gamma events. The fully connected residual blocks al-
lows us to create a thin, yet very deep residual fully
connected neural network which avoids the aforemen-
tioned problems. Studies in [25] confirm that without
this residual block structure our deep network will stop
learning and its accuracy degrade.

Network Generation and Training Regime: First we
start by creating a JSON file which contains all of the
values we wish to use for the creation of our neural
network at run time. This allows us to set network wide
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hyperparameters like: layer dropout rate, the inter-layer
activation function, number of layers, neurons per layer,
layer regularization type, residual block size, input layer
dimension, and output layer dimensions. This JSON
file also contains data that allows us to change some
hyperparameters associated with the training process
like: learning rate or a learning rate function, epochs,
batch size, and the percent of records to be used in
validation.

The network configuration is loaded and fed to a
Python function which takes in the entire JSON as
a Python dictionary; this information is then used to
generate a Keras Model object. The first layer of the
model will always be a Keras input layer and the
final layer of the model is always a Keras softmax
activation layer. We always have an output dimension
of 13 which is the number of classes used during
classification. The hidden layers of the model are always
made of num layers/block size many residual blocks
with block size fully connected layers per block. The
activation function between any fully connected layers,
called inter-layer activation, is always leaky ReLU and
there is no activation function between the concatena-
tion step and the proceeding fully connected layer. The
dropout rate for all fully connected layers is set to 45%
and no dropout was used between the concatenation and
the following fully connected layer. No additional forms
of regularization are used. In our preliminary results,
we saw that batch normalization provided no noticeable
benefits leading to no usage of batch normalization
during training.

After generating the network and loading in the data
with pandas, we split the data into a 80% training set
and 20% validation set. We do not carve out a testing set,
instead we generate clinically accurate test data sets with
the our model whenever needed. For the training process
itself we use the Keras Model.fit method which is
given epochs, batch size, a training set, a validation
set, a few callbacks, and some dynamic learning rate
function from the JSON parameter file. Our callbacks
were a learning rate scheduler, an epoch timer, the
Keras ModelCheckpoint, and a Keras CSVLogger.
We always used the Adam optimizer and categorical
crossentropy loss while training. When Keras finished
fitting the data we save the model using the Keras
Model.save method.

For the learning rate we opted to use a non-adaptive
non-constant learning rate scheduler. We use the Keras
LearningRateScheduler callback to create our
step scheduler which prescribes the learning rate ti for

epoch i with

ti = L(i) =


10−3 1 ≤ i ≤ p

3 ,

10−4 p
3 < i ≤ 2p

3 ,

10−5 2p
3 < i ≤ 5p

6 ,

10−6 5p
6 ≤ i ≤ p,

(1)

where p denotes the total number of epochs used for
training. We chose this simple learning rate scheduler
over more complex schedulers because it is straight
forward and showed positive results.

Any values which can be set and are not discussed
here are left as their respective default values.

Postprocessing: To generate a confusion matrix we
load in our test data using pandas. We also load in our
model using Keras. The data manipulators that were used
to generate the training data are loaded using pickle. The
test data is pushed through the data manipulators with
wrapping in the same manner as the training data. From
there we use the Keras Model.predict method to get
the predicted classes from the neural network. Lastly we
feed the resulting predictions and true class information
to sklearn’s confusion matrix routines to generate a
confusion matrix.

To reconstruct the original proton beam, we first load
in the data manipulators, the test data, and the trained
model. From there we use the Keras Model.predict
method to get the predicted classes from the neural
network. Then we use numpy Array.argmax to deter-
mine which class is most likely for all events. This class
data is then used for the cleaning process. All misordered
triples are reordered to produce the correct ordering. All
DtoTs have their falsely coupled single decoupled and
their remaining double reordered. All false events are
removed and all non-false events are saved. Following
the neural network data processing, we can use the kernel
weighted projection (KWBP) algorithm to reconstruct
images of the prompt gammas emitted during the proton
beam irradiation. The KWBP method was developed
specifically for prompt gamma image as described in
detail in [21]. For this study we reconstructed prompt
gamma images with the dimensions 120px by 512px
with each pixel having a dimension of 1mm by 1mm.

We evaluate the quality of the images using the
Contrast-to-Noise Ratio (CNR) metric. We compute
CNR as

C =
|µBP Region − µnoise|

σnoise
, (2)

where µBP Region is defined as the mean pixel value within
the high intensity region of the image, µnoise is the mean
value of the image background noise, and σnoise is the
standard deviation of the background noise. We define
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the area for µBP Region as the rectangular region ranging
from 27mm to 36mm along the height and 184mm by
254mm along the length of the image, that is, inside
the portion of the beam with the highest intensity. To
compute µnoise and σnoise we choose a region well outside
the high intensity region, and use the pixel values within
the rectangular region from 0mm to 60mm along the
height and from 394mm to 512mm along the width of
the image. This captures a diverse collection of noise in
the background without favoring a reconstruction which
may have zero noise in a small region after the fall off
but a lot of noise around the noiseless region.

Hardware and Software Used

The studies in this work use a distributed-memory
cluster of compute nodes with large memory, and con-
nected by a high-performance InfiniBand network. The
following specifies the details:

• 2018 GPU node: 1 GPU node containing four
NVIDIA Tesla V100 GPUs (5120 computational
cores, 16 GB onboard memory) connected by
NVLink and two 18-core Intel Skylake CPUs. The
node has 384 GB of memory (12 × 32 GB DDR4
at 2666 MT/s).

• 2013 GPU nodes: 18 hybrid CPU/GPU nodes,
each two NVIDIA K20 GPUs (2496 computational
cores, 5 GB onboard memory) and two 8-core Intel
E5-2650v2 Ivy Bridge CPUs (2.6 GHz clock speed,
20 MB L3 cache, 4 memory channels). Each node
has 64 GB of memory (8×8 GB DDR3). The nodes
are connected by a QDR (quad-data rate) InfiniBand
switch.

These nodes are contained in the cluster taki of the
UMBC High Performance Computing Facility (http://
hpcf.umbc.edu).

All studies and preprocessing using one or more of the
following Python packages with the respective version:

• Python 3.7.6,
• Tensorflow 2.4.0 and the bundled Keras
• Numpy 1.18.1,
• Scipy 1.4.1,
• Scikit-Learn 0.23.dev0,
• Pandas 1.1.0.dev0+690.g690e382 (configured for

icc 19.0.1.144 20181018),

DATA AVAILABILITY

The data used to train our neural network can be
found at https://hpcf-files.umbc.edu/hosting/barajasc
digital medicine data/150MeV all converted shuffled
normed.csv.

CODE AVAILABILITY

The code used in this study may be made available
upon reasonable request to the corresponding author.
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