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Abstract

Proton beam radiotherapy is a method of cancer treatment that uses proton beams to irradi-
ate cancerous tissue, while simultaneously sparing doses to healthy tissue. In order to optimize
radiation doses to the tumor and ensure that healthy tissue is spared, many researchers have
suggested verifying the treatment delivery through the use of real-time imaging. One promising
method of real-time imaging is the use of a Compton camera, which can image prompt gamma
rays that are emitted along the beam’s path through the patient. However, because of limita-
tions in the Compton camera’s ability to detect prompt gammas, the reconstructed images are
often noisy and unusable for verifying proton treatment delivery. Machine learning is able to
automatically learn patterns that exist in numerical data, making it a promising method to ana-
lyze Compton camera data for the purpose of reducing noise in the reconstructed images. First,
we provide motivation for training deep neural networks over standard ensemble techniques. We
then present the usage of supervised deep neural networks to detect and exploit these patterns
so that we can remove and correct the various problems that exist within our data.

Key words. Proton beam therapy, Prompt gamma imaging, Compton camera, Machine
learning, Deep learning.

1 Introduction

Proton beams’ primary advantage in cancer treatment as compared to other forms of radiation
therapy, such as x-rays, is their finite range. The radiation delivered by the beam reaches its
maximum, known as the Bragg peak, at the very end of the beam’s range [30]. Little to no radiation
is delivered beyond this point. By exploiting the properties of the Bragg peak it is possible to only
irradiate cancerous tissues, avoiding any damage to the surrounding healthy tissues [25]. Due to
uncertainties in the range of the beam, relative to important organs in the body, it is difficult to
make optimal use of the Bragg peak during treatment.

The Compton camera is one method for real time imaging, which works by detecting prompt
gamma rays emitted along the path of the beam. By analyzing how prompt gamma rays scatter
through the Compton camera, it is possible to reconstruct their origin. It has been suggested
that the range of the proton beam in the patient could be verified by using a Compton camera
to image the prompt gamma rays emitted during proton treatment delivery. There are a couple
hurdles in achieving this goal. The Compton camera does not explicitly record the sequential order
of the prompt gammas that interact with the camera’s internals twice (a double scatter) or three
times (a triple scatter). In addition, it often records false events, which mislabel scatterings of
separate, distinct, prompt gamma rays as originating from a single gamma. These problems make
reconstructions based on Compton camera data noisy and unusable for practical purposes [25,26,32].

Neural networks, in general, represent repeated non-linear data transformations which map an
input record to an expected outcome. Shallow networks like the ones seen in [32] and [21] used
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1 layer and 2 layer neural networks respectively to perform less intensive classifications based on
simpler prompt gamma simulation data. Instead of using shallow networks we approach these
problems by leveraging several different deep fully connected neural networks which consist of well
over 100 layers each.

We justify our usage of deep learning by demonstrating that traditional ensemble methods,
like random forests, do not have the ability to generalize on our data. We also show that the
classification accuracy of random forests pale in comparison to our neural networks’ ability to
perform the same task. We provide an in-depth analysis as to why the data we use in this work
is different from our previous work in [6]. We also implement a fully connected residual block to
prevent back propagation stagnation typically associated with deep neural networks. For network
design and creation we use a network architecture generator, written in Python3 which uses Keras
and Tensorflow, to build our deep fully connected neural networks. We use this generator in this
work and in [18] to make networks which specialize in determining whether a given double is
correctly ordered or is actually falsely coupled singles misreported as a double by the Compton
camera. We train our doubles network on 2.2M events with 10 features per record. We use the
mentioned generator in this work and in [3] to make networks which specialize in determining
whether a given triple is: a true triple which has one of six possible orderings, a “double-to-triple”
where a single is incorrectly attached to a true double of arbitrary ordering yielding six possible
cases, a “false triple” which is three singles misreported as a true triple by the Compton camera.
We attempt to classify a given triple into one of these 13 classes. In [3] we specifically focus on the
predictions of doubles-to-triples. The jump from classifying 12 classes to 13 classes is surprisingly
difficult and requires significantly more configuration and training time because false triples are so
similar to doubles-to-triples which themselves are similar to triples. We refer to the triples/doubles-
to-triples/false triples data configuration as triples only. We train our triples only networks on 1.8M
events. We test all of our networks on 20 different MCDE simulation data sets which consist of
varying dose rates.

The remaining sections of this work are organized as follows: Section 2 introduces proton
beam therapy for cancer treatment and its current limitations. Section 3 discusses how Compton
camera imaging could be used to overcome the limitations of proton beam therapy but the presence
of false events and misordered interactions in recorded data prevents practical usage. Section 4
gives a brief overview of machine learning ensemble methods, properties and operation of neural
networks in the context of deep learning, and how neural networks have been used in similar works.
Section 5 details how the data has to be handled, changed, and labelled for deep learning viability.
Section 6 catalogues the hardware and software used for all research activities. Section 7.3 details
the performance of random forests used for prompt gamma classification. Section 7.2 through
Section 7.4 describes how all variations of the networks performed on different proton beam sets.
Section 8 presents our conclusions from this work.

2 Proton Beam Therapy

Proton beam therapy was first proposed as a cancer treatment in [30]. To a first order approxima-
tion, the radiation dose emitted by a proton beam is inversely proportional to the kinetic energy of
the particles within the beam. The beam’s particles lose kinetic energy as they traverse the patient,
the amount of radiation delivered by the beam is low at its entry point, gradually rising until the
beam nears the end of its range, at which point the delivered dose rapidly reaches its maximum [7].
This point of maximum dose is called the Bragg peak and the discovery and additional details
associated with it can be seen in [7]. One of the most important things about the Bragg peak is
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that little to no radiation is delivered beyond the Bragg peak. These characteristics of proton beam
therapy give it a distinct advantage over x-rays. Exploiting its finite range, medical practitioners
can confine the radiation of the beam to areas solely affected by cancerous tumors allowing vital
organs beyond the tumor to be spared [1, 12,25].

Figure 2.1 shows two horizontal cross-sections of the chest comparing how radiation is delivered
by x-ray therapy and by proton beam therapy. At the top of each image is the vertebral body,
which contains a tumor that should be irradiated. Since the heart, which is at the bottom center,
is still healthy, one should avoid delivering radiation to it. In the case of x-ray therapy the heart
lies directly in the path of the x-rays. For proton beam therapy, however, all radiation is confined
to just the vertebral body. The greater level of precision that proton beam therapy possesses allows
for higher doses of radiation to be delivered to cancerous tissues with minimal damage to healthy
tissues. This can lead to better patient outcomes [25].

While the characteristics of proton beam therapy explained above would in principle greatly
reduce the negative effects of radiation therapy, there are still practical limitations. In current
practice the patient’s body is imaged before undergoing treatment in order to map the position of
the tumor. Proton beam therapy consists of multiple sessions over a period of one to five weeks.
The relative size and position of the tumor within the patient’s body may change as surrounding
tissues swell, shrink, and shift. Whenever using proton beams a safety margin must be added to
the position of the Bragg peak in order to fully irradiate the tumor. This rules out certain beam
trajectories that would otherwise minimize damage to healthy tissue [25].

Figure 2.2 compares two possible beam trajectories through a cross-section of the chest [25]. In
this case the heart, outlined in purple, is positioned at the top-center of the figure and a tumor,
outlined in green is located next to it. The optimal trajectory can be seen in the left image and uses
a single beam, which is represented as the space between the dashed white lines, to fully irradiate
the tumor before hitting the heart. Due to uncertainty in the exact location that the Bragg peak
occurs (and the beam stops) a safety margin is added to the optimal beam extent to ensure the
tumor always receives the prescribed dose even in the presence of day-to-day changes in patient
setup and patient internal anatomy. This safety margin is represented in the figure as an orange
strip at the end of the beam. This strip partially overlaps the heart which means that there is a
possibility that the heart could be irradiated. In practice professionals opt for the trajectory in the
right image which uses two beams instead. This new trajectory is considered suboptimal because
it delivers a small dose of radiation to the lungs [25].

(a) (b)

Figure 2.1: (a) X-ray treatment as compared to (b) proton beam treatment.
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Figure 2.2: (a) Optimal proton beam trajectory. (b) Suboptimal trajectory necessary to protect
heart.

3 Compton Camera Imaging

3.1 Introduction to the Compton Camera

In order to exploit the full advantages of proton therapy, many researchers are investigating methods
to image the beam in real time as it passes through the patient’s body [13, 25, 26]. One proposed
method for real time imaging is by detecting prompt gamma rays that are emitted along the path
of the beam using a Compton camera. A Compton camera is a multi-stage detector that uses the
principles of Compton scattering, detailed in [11], to produce 2D and 3D images of gamma ray and
x-ray sources [27,28].

As the proton beam enters the body, protons in the beam interact with atoms in the body,
emitting prompt gamma rays. These prompt gamma rays exit the body and some of them enter
the Compton camera. Modules within the Compton camera record interactions with energy levels
above some trigger-threshold. These modules have a non-zero time-resolution during which all
interactions are recorded as occurring simultaneously. For each interaction (also called a Compton
scatter) an (x, y, z) location and the energy deposited are recorded. The collection of all interaction
data that a camera module collects during a single readout cycle is referred to as an event [20].

In principle it is possible to use the data that the Compton camera outputs (paired with a
suitable reconstruction algorithm) in order to image the proton beam, however this has been shown
to only be feasible at low energy levels. At the higher energy levels more typical of proton beam
therapy, reconstructions of the beam are far too noisy to be helpful. This is a result of two main
limitations in how the Compton camera records events [20]:

• Reconstruction methods typically require that all interactions in an event be correctly chrono-
logically ordered by their occurrence. However, as noted above, due to the camera’s non-zero
time-resolutions, the camera records all interactions within an event as occurring simultane-
ously. Therefore, the order of interactions that it outputs is arbitrary.

• Reconstruction methods also assume that all interactions in an event correspond to the same
prompt gamma ray. The Compton camera classifies all scatters occurring in the same module
during the same readout cycle as belonging to the same event. Should two prompt gamma
rays enter the same module of the Compton camera during the same readout cycle, the camera
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would record the resulting interactions as a single event. This results in readouts that do not
correlate to any actual physical event which we refer to as bad events.

At the higher energy levels typically used in treatment, proton beams emit a larger number of
prompt gamma rays per unit time, increasing the likelihood of bad events. Also, prompt gamma
rays are more likely to scatter at higher energy levels, leading to more multi-scatter events, which,
as explained above may be misordered in the output data. These two effects greatly diminish the
accuracy of Compton camera reconstructions at high energy levels, making them unusable [20].

3.2 The Definition of Event Types

Multi-scatter events can be classified into five categories: true triples, doubles-to-triples, doubles,
false triples, and false doubles. A False Triple event consists of three interactions which all originate
from separate prompt gamma rays that happened to enter the same module of the camera at the
same time. These should be removed from the data before reconstruction. Similarly, False Double
events contain two interactions originating from separate prompt gamma rays and should also be
removed before reconstruction. A Double-to-Triple event contains two interactions corresponding
to the same prompt gamma ray, and one interaction from a different prompt gamma ray. The non-
corresponding interaction should be removed before reconstruction. The two remaining categories
of events are true double and true triple events, which, once properly ordered, can be used for
reconstruction.

Figure 3.1 shows a schematic of the Compton camera as it records events. The left side shows
events produced at low energy levels and the right shows higher energy levels. Each row represents
an independent module of the camera. The red arrows represent scatters. Those originating from
the same prompt gamma ray are connected by a dotted line. A single readout cycle within a module
of length TA is represented by a raised pulse. The value n is how many interactions occur during
the readout cycle. Looking at just the left side, the first two rows show a True Double and True
Triple event, respectively. The third row shows a False Double event consisting of two scatters
originating from different prompt gamma rays. The fourth and fifth rows show two True Single
events that consist of separate scatters. The right side representing higher energy levels shows a
far greater proportion of false events.

The raw data output by the Compton camera contains the information shown in Figure 3.2 (a).
The matrix represents an entire event, while each row represents one interaction. There are three
rows because an event can contain up to three interactions. The variable ei represents the energy
level of the ith interaction, where i = 1, 2, 3, while (xi, yi, zi) represents the corresponding position.
Note that data representing double events contains only two rows rather than three because double
events only contain two interactions.

To improve the performance of our networks, we find it useful to use the appended data shown
in Figure 3.2 (b). In this version we add the Euclidean distances δri,j where i, j = 1, 2, 3 and δxy
is the Euclidean distance between interaction x and interaction y. Since these values have physical
significance with regards to the ordering of interactions, explicitly including them in the data makes
it easier for the networks to learn.

4 Machine Learning

4.1 Ensemble Methods

Work in [6], [5], and [4] show initial success in multi-class classification using various fully con-
nected neural networks. In conjunction with the previous technical reports, this report studies
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Figure 3.1: An illustration of events.

e1 x1 y1 z1
e2 x2 y2 z2
e3 x3 y3 z3

e1 x1 y1 z1 δr1,2
e2 x2 y2 z2 δr2,3
e3 x3 y3 z3 δr3,1

(a) (b)

Figure 3.2: (a) The initial input format representing a single event. (b) The appended input format
including distances.

random forest models to hopefully provide motivation as to whether further work into deep learn-
ing techniques has greater potential to improve testing accuracy rather than standard classification
techniques such as logistic regression, naive bayes, k-nearest neighbours, decision trees, and support
vector machine. Each of these classification strategies’ accuracies depend on the characteristics of
the data as well as hyperparameters of the respective strategy. It is common for may of these classi-
fication models to produce similar results on the same data sets. As such, results from the random
forest studies can provide initial motivation for further studying the other standard classification
techniques.

An important conclusion in [32] was that naive Bayes showed great promise in classifying true
triples but was significantly slower than neural networks despite yielding better accuracies. They
note that it took several days to get a result but the ordering task requires a performance time of
a couple minutes at most for usage in a real-time setting.

Random forests are a commonly used ensemble method that average the results from decision
trees for classification, regression, and other forms of machine learning. The studies in this report
use random forest models trained for classification accuracy. Within the random forest, each
individual decision tree in itself is another form of machine learning classification, where based on
characteristics of a sample, the sample is classified. Typically, random forests outperform single
decision trees as they can average the results of many decision trees. The averaging of the individual
decision trees directly tackles any overfitting that occurs when training individual decision trees.
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A more in-depth explanation of the ensemble method can be described in [8]. For the studies
in this report, the random forests models are from scikit-learn 0.23.dev0 (sklearn). All
hyperparameter studies use hyperparameters defined in the sklearn library.

With the random forest classifier from sklearn we studied a randomized search on many of the
possible hyperparameters. The results to both studies are shown in Section 7.3.

4.2 Neural Networks

4.2.1 Deep Learning

We propose to train a neural network to process the data output by the Compton camera.
The structure of a fully connected neural network is shown in Figure 4.1 [2]. The network

contains three main components: an input layer which accepts the data, hidden layers which each
perform some transformation on the data, and an output layer which returns the transformed data
in some prescribed format [10]. In the case of the data output by the Compton camera, we would
like the neural network to read a multi-scatter event and determine which interactions originate
from the same prompt gamma ray, and what the correct order of these interactions are.

Figure 4.2 shows the training and testing process for a neural network using supervised learning
[2]. Supervised learning refers to training the neural network using labels for the data. These labels
provide a clear cut answer as to what the the output data should look like when the hidden layers
have finished their work. By feeding data into the network and comparing it with the corresponding
labels using a suitable loss function, we can calculate the current loss of the neural network. The
neural network can then be updated using an optimization function. After training the network,
it is then tested on data it has not seen before. If the network performs well on data it was not
trained on, this indicates that the neural network generalizes well and can be used on additional
unseen data.

To improve the network’s performance, it is typical to train the network on all available data
multiple times. One pass through all the training data is referred to as an epoch. Often, the
network will be trained for hundreds or thousands of epochs. It is standard practice to set aside
some data with which to evaluate the network after each epoch. These data are called the validation
data. By evaluating the network at the end of each epoch, it is possible to plot how the network’s
performance improves over the training process, giving insight into whether or not the network
has been fully trained. After the network has finished training, a final data set separate from the
training data and validation data is used to test the network. This data set is referred to as the

→ →

DATA

LAYER LAYER LAYER LAYER

CORRECT ORDER
CE2, CE1, CE3

HIDDEN LAYERS

NETWORK

1  2  3  4

OUTPUT
1
0
1
1
0
1
0
1

Figure 4.1: The structure of a fully connected neural network.
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Figure 4.2: The training and testing process for a fully connected neural network.

test data.
One of the primary difficulties in deep learning is training a network so that it properly fits

the data it is being applied to. Figure 4.3 compares the accuracy curves of three networks which
originate from a textbook example as they are being trained [10]. In each plot the blue curve
represents training accuracy, that is, how well the network performs on training data at each
epoch, while the orange curve represents validation accuracy, which measures how well the network
performs on a validation set composed of data the network was not trained on. When there is still
information in the data that has not been incorporated into the network’s model this is referred to
as underfitting which can be seen in the left plot. Since the network still has not fully internalized
distinguishing features in the training data, it performs just as well on the validation data as it
does on the training data. This occurs because the network has either not been trained enough,
or because the network size is too small to fully capture all patterns within the data. When
the network performs very well on the data it has been trained on but does not perform well
on data that it has not been trained on, this is called overfitting which can be seen in the right
plot. Here there is a large gap between training accuracy and validation accuracy, indicating a
lack of generalization. Overfitting occurs because the network has begun directly mapping inputs
to outputs which is equivalent to “memorizing” the data. Since large networks have a greater
capacity to store information about the data, they are more likely to overfit. Therefore, using a
larger network does not necessarily lead to better performance [10]. The plot in the center shows
what the training and validations curves of a suitable fitting look like. The training and validation
curves are just beginning to diverge, but are still very close. This occurs because the network has
incorporated as much information from the model as it can, so any additional training either has
no effect on the validation accuracy, or even lowers it.

Neural networks have shown promise in the handling of Compton camera data in other works. In
Zoglauer et al. [32] it was shown that a 1 layer fully connected neural network can be fed raw camera
data and some computed values to determine the correct ordering for true triples. The authors
conclude that their neural network performs competitively to classical sequencing techniques. In
that same work the authors attempted to use a Bayesian approach but it took several days to run
and cannot be considered a reasonable replacement to the classical or neural network approaches.
In Muñoz et al. [21] they use a 2 layer fully connected neural network with a binary output layer to
determine if any given event should be used for reconstruction. The authors were able to successfully
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(a) underfitting (b) suitable fitting (c) overfitting

Figure 4.3: The training and validation accuracy curves representative of underfitting, a suitable
fitting, and overfitting.

decrease the amount of bad data being used for reconstruction and increase the amount of good
data used for reconstruction. They note a relative increase of 35% for the good to bad data ratio.
The emphasis of our work is both in the complexity of the network and the classification power it
provides. The “deep” in deep learning stems from the fact that a neural network with many layers is
considered deep and networks with very few layers are considered to be shallow. Both [32] and [21]
use very shallow networks, 1 layer and 2 layers respectively, which were capable of classifying much
simpler scenarios. Our proposed networks used in Section 7 contain over 100 layers for any given
network and correct more noise causing scenarios than the other works through several different
methods.

4.2.2 Activation Functions

Activation functions are one of the core parts of neural networks [10]. Consider a single fully
connected layer. By definition, the unknowns of a fully connected layer are a weight matrix A with
a bias vector b. For simplicity we will use only a single record for x. Take some record x and do a
matrix vector product such that y = Ax+ b. To add another layer we repeat this operation again
with a weight matrix K and bias vector d such that Ky+ d = z. Now we have two fully connected
layers with no activator. When we expand z we get z = KAx+(Kb+d). With a simple replacement
of F = KA and t = Kb+ d we have z = Fx+ t. Since we are only interested in finding out how x
becomes z there is no need to solve for K, A, d, or b, we can solve for F and t directly instead of
solving for all other unknowns. In order to increase the problem complexity and artificially enforce
the importance of all unknowns we use non-linear functions called “activation functions”. We take
a non-linear function like tangent and apply it element wise to a matrix or vector. By using an
activation between our two layers and expanding z we get z = K tan(Ax+ b) + d where tangent
is applied element-wise to Ax + b. By weaving these non-linear functions into our compositions
we introduce non-linearity and create a situation where the weights of both A and K need to be
solved for. For a more in-depth explanation about the underlying mathematics associated with
fully connected networks see [29]. The struggle we have now is choosing a non-linear function to
use.

In [6] we used a Scaled Exponential Linear Unit (SeLU) proposed in [17] and stated as

s(x) =

{
λx x > 0,

λαex − λα x ≤ 0.
(4.1)

The constants α and λ could be treated as hyperparameters but [17] actually computed optimal
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values with proof in the publication. One of the major benefits of SeLU is that it has a self-
normalizing property. By bundling the normalization into the activator we actually make the
network cheaper by removing all batch normalization which occurs between layers.

Through experimentation with hyperparameter settings we found that normalization shows
no noticeable accuracy benefits. Since normalization seems to have little, if any, impact on our
outcomes, the self-normalizing property of SeLU is more of a hindrance. Why bother with the
expense of e when we can opt for a cheaper activator function like the Rectified Linear Unit
(ReLU) or Leaky ReLU. ReLU, otherwise known as

r(x) =

{
x x > 0,

0 x ≤ 0,
(4.2)

is one of the more commonly used activators and is discussed in [10]. Notice how it has no mathe-
matical operations but is still a non-linear function making it extremely cheap compared to SeLU.
When neural networks use ReLU and become sufficiently deep they experience a “dying” effect [19].
The neurons gradually become 0 as the network feeds forward. This makes ReLU incompatible
with our desire to create a very deep network. Instead we opt for Leaky ReLU

l(x) =

{
x x > 0,

βx x ≤ 0,
(4.3)

which has single multiplication with a small positive constant β. We consider β to be a hyper-
parameter which can be tuned but we decided to use Keras’ default value of 0.3. This non-zero
β fixes the dying forward propagation seen with ReLU [15]. With Leaky ReLU we get a much
cheaper activator which uses scalar multiplication instead of scalar multiplication, exponentiation,
and subtraction combined.

Any neural network which uses a one-hot binary multi-class output uses the Softmax function
as the activation function on the output layer. Given some n by 1 vector x we define Softmax as

s(x)i =
exi∑n
j=1 e

xj
∀i ∈ {1, . . . , n}. (4.4)

When it is used on the output layer of a neural network it produces a probability for each output
node that can be interpreted as the network’s confidence that a given input maps to the respective
node [9]. We use the Softmax function for the output layer on all networks in Section 7.

4.2.3 Fully Connected Residual Blocks

The network used in Section 7 is a deep fully connected neural network. Neural networks, especially
fully connected ones, break down once they start becoming notably deep and complex. One of the
first problems is that the values start to become very small during the forward propagation process.
This leads to zeros and like-zero values becoming more prominent as you go deeper and deeper.
A partial fix to this forward propagation issue is to use Leaky ReLU over the traditional ReLU.
The second problem occurs during back propagation. During back propagation we start to see the
gradient becoming like-zero causing little to no update to existing weights which causes learning
stagnation. This phenomenon is discussed more intimately in [14] where they detail these effects.
The major breakthrough solution to this problem is also proposed in [14] where they create ResNet,
a network built from “residual blocks”. We use their original implementation of residual blocks as
the conceptual basis for our fully connected residual blocks. A visual representation of the fully
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Figure 4.4: Our fully connected residual block takes an input and passes it through n layers
eventually adding it to the output of the n layers.

connected residual block can be seen in Figure 4.4. Consider some record x. We pass it as an
input to a small group of n layers with their own activators. The result of the layer digestion
we can call y. Finally, we concatenate x and y. The concatenation in our case, and the case of
the original ResNet, is addition. This addition operation helps push non-zero values through the
forward propagation process which helps keep input data to each block fresh and non-zero. This
also helps prevent vanishing gradients during the back propagation process.

The residual block method in [14] concatenates the data before the activation function is applied.
The second version of ResNet, called ResNetV2, concatenates after the activation function. The
original residual blocks were designed using convolutional layers in an image classification network.
We create residual blocks using only fully connected layers with post-activation concatenation for
the classification of prompt gamma events. The fully connected residual blocks allows us to create
a thin yet super deep fully connected neural network which avoids the aforementioned problems.

4.2.4 Learning Rate Schedulers

To talk about learning rate schedulers first we have to mention a small piece about our optimizer.
In Section 7 we use the Adam optimizer for all of our neural networks. What Adam is and how it
works can be seen in detail in [16]. The only piece of the document we need to consider is

θi = θi−1 − α
m̂i√
v̂i + ε

. (4.5)

For clarity we want to point out that θ is the variable which is being updated. In the context of a
neural network, θ, could be a neuron or an entire weight matrix depending on the neural network
layer type and implementation of the optimizer. This update function uses special step direction,
m̂i/(

√
v̂i + ε), which is designed to be adaptive and based on momentum of the bias vector and

weight matrix [16]. The update function also uses a constant step length α which is commonly
referred to as the learning rate in the context of neural networks.

Here we want to focus on α from Equation 4.5. In Equation 4.5 the α stays constant. With a
learning rate scheduler we allow the α to change as the epochs increase. Let L be a function which
produces the learning rate to be used at the ith epoch. Keras passes the epoch number and the
learning rate from the previous epoch as inputs to L. So long as there is a function which takes
these inputs and returns a learning rate to be used at the current epoch then Keras cares very little
what else is incorporated to make this happen.
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With these parameters we can design a simple step function which tightens the learning rate
after a third, two thirds, and five sixths of the total number of epochs have been performed. Let
p be the total number of epochs and ti the learning rate for any given epoch. Then to tighten as
described we would use

ti = L(i, ti−1) =


10−3 i ≤ p

3

10−4 p
3 < i ≤ 2p

3

10−5 p
3 < i ≤ 5p

6

10−6 5p
6 < i.

(4.6)

We choose to use this step scheduler in this work because it is simple and showed promise in [6].
The scheduler listed in Equation 4.6 was used to determine the learning rate during training for all
networks in Section 7.

5 Preprocessing

5.1 Standardization and Normalization Techniques

In order to give our network a better chance at learning we decided we would focus more heavily on
preprocessing and pre-computed values. All methods we used are a part of sklearn’s preprocessing
library or sklearn.preprocessing [22].

The exact nature of our allows us additional assumptions. We take advantage of the fact that
each event has 3 interactions for triples and 2 interactions for doubles. All notation in the section
will be for the triples only data. For all normalization we reshape, otherwise referred to as “wrap”,
the data such that we normalize over all x, y and z rather than x1, x2, x3 and so on. From a
mathematical standpoint, let E ∈ Rn×3∗f be a matrix containing n events with 3 interactions and
f features per interaction. For normalization we reshape E such that it becomes R ∈ R3∗n×f and
then normalize by column. This reshaping process can be hard to visualize so instead consider
Figure 5.1 where we have E ∈ R2×9. We know that E has 3 features per interaction and that our
new matrix R after reshaping will be R ∈ R6×3. Now to expand upon this notation let Ep be a
submatrix of E where all of the events in Ep belong to module p. For the pth module let Epij be
value of the jth feature of the ith event of that module. Then by extension Rpij is the reshaped
version of Ep where we are looking at the jth feature of the ith row after Ep has been reshaped.
Finally we will say that R̂p is the normalized version of the module submatrix Rp and Êp would
be the unwrapped version of R̂p. We use the notation for by module normalization and corrections
but we do not use by module arithmetic for the studies in Section 7. Since we are not adjusting the
data by module in this work you can assume that all data is contained in a single module for the

E =

[
E11 E12 E13 E14 E15 E16 E17 E18 E19

E21 E22 E23 E24 E25 E26 E27 E28 E29

]
reshape→



E11 E12 E13

E14 E15 E16

E17 E18 E19

E21 E22 E23

E24 E25 E26

E27 E28 E29

 = R

Figure 5.1: A demonstration of the data wrapping process performed by numpy.
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purposes of preprocessing. If we were to normalize by module we would still feed all of our data
into the machine learning algorithm as a whole NOT by module.

The MaxAbsScaler scales and translates by feature such that the maximal absolute value of
each feature is between -1 and 1. First we wrap the data into R and start normalizing by module.
We know that any element in R̂p can be written as

R̂pij =
Rpij

max
k∈{1,...,3∗n}

|Rpkj |
. (5.1)

This method of normalization was how we adjusted all spatial values with wrapping in Section 7.
The PowerTransformer uses the Yeo-Johnson method, detailed in [31], to normalize the data.

The idea is that we can use parametric transformations to attempt to map data to a normal
distribution. After transforming the data the transformer applies zero-mean, unit variance normal-
ization. We let ψ(λj , R

p
ij) represent the power transformation function and note that the value λj

is computed by sklearn using a maximum likelihood estimation for the jth column of Rp. Now we
can compute any element of R̂p as R̂pij with

R̂pij = ψ(λj , R
p
ij) =



(Rpij+1)λj−1
λj

if λj 6= 0, Rpij ≥ 0,

ln(Rpij + 1) if λj = 0, Rpij ≥ 0

− (−Rpij+1)2−λj−1)
2−λj if λj 6= 2, Rpij < 0,

− ln(−Rpij + 1) if λj = 2, Rpij < 0.

(5.2)

The interesting part of this transformer is that it maps to something close to the Gaussian dis-
tribution. We used this transformer to normalize our energy deposition values using wrapping in
Section 7.

5.2 Events and Their Classes for Deep Learning

For the ease of discussion we will talk about our data as doubles and triples only because these two
scenarios have separate methods for data cleaning and classification. This is because the number
of elements in the doubles data is less than the number of elements in the triples only data because
they have one less interaction. The number of elements in the doubles and false doubles are the
same. Our triples only are the true triples, doubles-to-triples, and false triples and they all have
the same number of elements. These three categories provide a combined total of 13 classes that
are used for classifying our data. Let each interaction be represented by 1, 2, or 3 for any given
event. When a triple is correctly ordered we call that a 123 event. When a triple is misordered it
is represented as 132, 213, 231, 312, 321. All possible orderings can also be seen in Figure 5.2. To
explain the labelling system more, consider the 312 event from Figure 5.2. In the 312 event the
data which should be interaction 1, [e1, x1, y1, z1], shows up as interaction 2. Similarly, [e2, x2, y2, z2]
shows up as interaction 3 but should be interaction 2. Lastly, [e3, x3, y3, z3] shows up as interaction
1 but should be interaction 3. For doubles-to-triples one of the interactions is actually a single
which was incorrectly coupled to a double. When talking about a double-to-triple we still have
three interactions but instead use 1, 2, or 4. A 124 event is a correctly ordered double-to-triple
where the last interaction is a falsely coupled single. When a double-to-triple is misordered it is
represented as 214, 134, 314, 234, 324. For example a 314 means that the [e1, x1, y1, z1] shows up
under the third interaction, [e2, x2, y2, z2] shows up under the the first interaction, and a falsely
coupled single shows up under the second interaction. False interactions are labelled as a 444 event
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Class Interaction 1 Interaction 2 Interaction 3

123 e1 x1 y1 z1 e2 x2 y2 z2 e3 x3 y3 z3
132 e1 x1 y1 z1 e3 x3 y3 z3 e2 x2 y2 z2
213 e2 x2 y2 z2 e1 x1 y1 z1 e3 x3 y3 z3
231 e2 x2 y2 z2 e3 x3 y3 z3 e1 x1 y1 z1
312 e3 x3 y3 z3 e1 x1 y1 z1 e2 x2 y2 z2
321 e3 x3 y3 z3 e2 x2 y2 z2 e1 x1 y1 z1
124 e1 x1 y1 z1 e2 x2 y2 z2 single

214 e2 x2 y2 z2 e1 x1 y1 z1 single

134 e1 x1 y1 z1 single e2 x2 y2 z2
314 e2 x2 y2 z2 single e1 x1 y1 z1
234 single e1 x1 y1 z1 e2 x2 y2 z2
324 single e2 x2 y2 z2 e1 x1 y1 z1
444 single single single

Figure 5.2: We can see the input class as the left column and the actual interaction data in
the proceding columns. The input class directly coordinates to how the energy and spatial data
are ordered in the data file for training. For example for a 312 event [e1, x1, y1, z1] shows up
as interaction 3 when it should show up as interaction 1. Similarly, [e2, x2, y2, z2] shows up as
interaction 1 but should be interaction 2. Lastly, [e3, x3, y3, z3] shows up as interaction 2 but
should be interaction 3. For doubles-to-triples one of the interactions is actually a completely a
single which was incorrectly coupled to a double.

and all three interactions are actually falsely coupled singles. The arrangement of the data for each
class in their respective interactions can be seen in Figure 5.2.

For doubles we only have three classes: 12, 21, and 44. A correctly ordered double is a 12 and
a misordered double is a 21. A false double is two falsely joined singles and is labelled 44.

6 Hardware Used

The studies in this work use a distributed-memory cluster of compute nodes with large memory,
and connected by a high-performance InfiniBand network. Both the 2018 and 2013 GPU nodes
feature two multi-core CPUs, while the 2018 GPU node has four GPUs and the 2013 GPU nodes
have two GPUs. The following specifies the details:

• 2018 GPU node: 1 GPU node containing four NVIDIA Tesla V100 GPUs (5120 computa-
tional cores, 16 GB onboard memory) connected by NVLink and two 18-core Intel Skylake
CPUs. The node has 384 GB of memory (12× 32 GB DDR4 at 2666 MT/s).

• 2013 GPU nodes: 18 hybrid CPU/GPU nodes, each two NVIDIA K20 GPUs (2496 com-
putational cores, 5 GB onboard memory) and two 8-core Intel E5-2650v2 Ivy Bridge CPUs
(2.6 GHz clock speed, 20 MB L3 cache, 4 memory channels). Each node has 64 GB of memory
(8× 8 GB DDR3). The nodes are connected by a QDR (quad-data rate) InfiniBand switch.

These nodes are contained in the cluster taki of the UMBC High Performance Computing Facility
(HPCF), whose webpage at hpcf.umbc.edu can provide more details.

All studies and preprocessing using one or more of the following python packages with the
respective version:
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• Python 3.7.6,

• Tensorflow 2.4.0 and the bundled Keras

• Numpy 1.18.1,

• Scipy 1.4.1,

• Pandas 1.1.0.dev0+690.g690e382 (configured for icc 19.0.1.144 20181018),

• mpi4py 3.0.3.

7 Results

The results section of this report is a collection of various studies, tests, networks, configurations,
and data samples that were used and done over the last year of our research. In Section 7.1 we show
that the old data we used in [5] is not usable for continued studies requiring us to use different data
for the reminder of our studies. In Section 7.2 we do a hyperparameter study on the simpler but
important doubles data set from our latest data and also show the network’s learning capabilities
and performance when incorporating false data. In Section 7.3 we do a random forest study on the
true triples to show the effectiveness of an ensemble method on our data. Lastly, in Section 7.4
we do multiple studies which gradually add more event types and the classes associated with those
events from the triples only data.

Due to the nature of the simulations we must combine events across multiple experimental data
sets for all of the data sets used for training and validation. DtoT events do not occur in large
quantities, if at all, in lower dose rates as is explained in [24]. True triples occur most frequently
at lower dose rates and less frequently at higher dose rates. We use a 150MeV proton beam with
a 0kMU dose rate for the true triples and a 150MeV beam with a dose rate of 100kMU for the
doubles-to-triples. It is important to remember that the dose rate should only affect how well the
Compton camera detects and determines interactions and events. It should not have any impact
on what underlying properties “make” a true triple, DtoT, true double, or false event [24]. These
reasons are enough for us to justify the merging of data sets from different simulated experiments
using different dose rates in order to ensure we have balanced classes.

For any given subsection we used 20% of the data for validation and the remaining 80% for
training. We used the Keras tensorflow.Keras.Models.Model.fit method for training and val-
idation.

7.1 Comparing Original Data to New Data

There were quite a few issues with our previous data set used in [5]. The first issue is that, perhaps
due to a configuration bug in the data generator, we cannot create similar data sets. In this section
the data set used in [5] will be called “old data” and the data we use for the remaining results will
be called “latest data”. Any attempt to validate, train, or test on newly generated data sets results
in a failure to learn. This is demonstrated by examining the distributions and viewing training
plots.

Consider Figure 7.1. Notice how the old data has a similar skewed shape to the latest data but
a completely different distribution of data among the bins. All three energies values have nearly
90% of their data falling within the first bin in the old data. This is in contrast to our current data
which has around 70% of the energies in the first bin. We can see that the remaining bins for the
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Figure 7.1: Each histogram represents the percent of records which fall within the particular bin
range for any given energy feature for both the old data and latest data.

new data also contain more data than the old data. This difference in energy distributions implies
that there is some unknown difference between the simulations of old and the ones we are using
now.

Now we look to Figure 7.2. These plots show the percentage of data distributed for the first
set of spatial coordinates. We admit that a difference in a couple percentage points can be treated
with some skepticism given that the simulations rely on Monte Carlo methods and do not produce
identical results even when given identical parameters. Notice that the distributions for x1 and
z1 are nearly identical in their shape and percentages. The y1 values, however, have different
concentrations with similar shapes and ranges. To the uninitiated it is difficult to determine whether
the simulations’ randomness is to blame for these concentration differences. The differences in the
energy distribution concentration and the y distribution concentration is too large to blame on
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Figure 7.2: Each histogram represents the percent of records which fall within the particular bin
range for any given spatial feature for both the old data and latest data.

randomness. These differences in the data, whatever the deeper specifics may be, is simply too
great for the network to predict on one set when trained on the other.

When we look at Figure 7.3 this point is demonstrated. We train on the old data and validate
on the latest data at every epoch and as a result the network’s validation accuracy is significantly
lower than the training accuracy. This usually means that the validation set, the latest data, is
either not similar enough to the training data, or that the latest data is more complex. What it
means to be more complex in this context is vague but most likely has to do with the underlying
simulation differences between the old data and the latest data. Perhaps there are more defining
patterns in the new data which do not exist in the old data. Maybe the old data contains simpler
patterns which do not generalize well when the energies and y values have different concentrations
in regards to their distributions seen in Figure 7.1 and Figure 7.2.
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Figure 7.3: Training and validation plot for a fully connected network trained on the old data and
validated on the latest data.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 63.8 2.6 9.6 2.6 5.7 4.4 0.9 0.9 1.3 0.0 3.1 3.5 1.7
132 2.7 62.5 2.7 17.0 3.1 3.1 0.4 0.4 1.3 2.2 2.2 1.8 0.4
213 10.7 3.1 63.8 3.6 10.3 2.7 0.9 1.3 1.3 1.8 0.0 0.0 0.4
231 2.7 11.2 3.1 60.7 1.8 8.0 1.8 4.9 0.4 2.2 0.4 0.9 1.8
312 1.3 6.2 9.4 1.8 67.9 2.2 0.0 1.3 2.2 4.5 1.3 0.4 1.3
321 3.6 0.9 2.7 8.5 3.1 68.8 1.8 8.5 0.4 0.0 0.4 0.9 0.4
124 0.4 0.4 0.9 0.4 0.0 0.0 36.9 7.1 0.0 0.0 0.0 0.0 53.8
214 0.4 0.9 0.4 0.9 0.0 0.4 1.3 38.7 0.0 0.0 0.0 0.0 56.9
134 0.0 0.0 0.4 0.4 0.0 0.9 0.0 13.8 28.0 0.4 0.0 0.0 56.0
314 0.9 0.4 0.0 0.0 0.0 1.3 0.0 0.0 10.2 31.1 0.0 0.0 56.0
234 0.4 0.0 1.3 0.4 0.9 0.0 0.0 0.0 0.0 8.0 31.1 0.0 57.8
324 0.0 0.9 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 2.2 41.3 53.3
444 0.4 1.3 0.9 0.9 0.0 0.0 4.9 5.8 6.7 4.9 2.2 5.8 66.1

Figure 7.4: Confusion matrix for a fully connected network trained on triples, double to triples,
and false data from a 150MeV using old data. The testing data used is the new data which shares
the same balanced classes.

This idea that the old data is less complex is painted clearer by the confusion matrix seen in
Figure 7.4. In [5] we trained, tested, and validated on the old data. Now when validating and
testing on the latest data we see similar triple accuracy for the new data as we saw for the old data
in [5]. Yet the doubles-to-triples and false data numbers have fallen significantly. The majority
of the doubles-to-triples are being improperly classified as false. This shows that the doubles-to-
triples and the false data are the reason for a drop in accuracy when classifying the latest data. The
doubles-to-triples and false events for the old data came from manually stitching singles to doubles
and other singles together respectively. The doubles-to-triples and false events for the latest data
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Figure 7.5: (a) Training and (b) Validation accuracy for dropout values over the span of 1000
epochs

were generated by the simulation software only. It seems that the old method of attaching singles
to other events does not mimic the idea of Compton camera bad detection. A more full breakdown
of doubles-to-triples and false events could be done to see why this is the case but it is beyond the
scope of this work.

7.2 Doubles Hyperparameter Studies

We conducted hyperparameter studies that train and classify double events on 150MeV beam data
for true doubles events. The hyperparameters studied consisted of the following: dropout rates,
number of neurons per layer, batch sizes, batch normalization, number of layers, and size of the
residual blocks. For the studies, our goal was to minimize time per epoch and to maximize training
and validation accuracy. Rather than running a large grid search of all hyperparameters, which
would be fairly time consuming, we tested each hyperparameter individually. The results and the
conclusions of these studies were used in [18].

7.2.1 Dropout Studies

For the dropout studies, we studied dropout values from 0.1 to 0.9 with increments of 0.1.
In Figure 7.5, we see the training and validation accuracy for the varying dropout values over

the span of 1000 epochs. From both figures, it appears that as the dropout value increases, the
accuracy decreases. We see that for dropout values closer to 0, the training and validation accuracy
plateau slightly above 80% whereas for dropout values closer to 1, the accuracies do not reach 70%.
At the end of 1000 epochs, we see that the training and validation accuracies vary around 20%,
where a dropout rate of 90% results in ≈ 65% and a dropout rate of 20% results in ≈ 83%. We
also see that the lower dropout rates learn faster than the larger dropout rates. This makes sense
as larger dropout rates mean that more neurons are excluded from update cycles, resulting in less
significant updates. Additionally, at 500 epochs, we see a significant jump for all dropout rates.
While not shown, the dropout value did not change the average epoch training time by more than
0.03 of a second. As such, for future studies, we used a dropout rate of 20%.
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Figure 7.6: (a) Training and (b) Validation accuracy for skip size studies over the span of 1000
epochs

7.2.2 Residual Block Size Studies

To study the impact of residual block size on a network with 24 layers, we use a block size between
1 and 24, where 24 is equivalent to using no residual blocks.

Figure 7.6 shows the training and validation accuracies for a selected sample of residual block size
values within the domain previously explained. The main observation is that there is a significant
difference in training and validation accuracy when a residual block is used vs not. The two plots
in the figure indicate that smaller residual block sizes perform slighter better than larger block
sizes. However, this difference of ≈ 1% is much less significant than the ≈ 20% accuracy difference
between residual block and no residual block. As previously explained, the large increase in accuracy
at 500 epochs is a consequence of the learning rate scheduler. While not shown, there was not a
significant difference in average training time per epoch for each of the residual block sizes. As
such, for future studies, we used residual blocks of size 2, which produced the highest training and
validation accuracies.

7.2.3 Number of Layers Studies

For the number of layer studies we studied different layer configurations from 4 to 24 layers. Fig-
ure 7.7 shows the training and validation accuracies for a selected sample of layer sizes within the
range of 1-24. While we tested all values between 4 and 24, the tables only plot these three values
as they represent the largest gaps in the model’s accuracy. While the change in accuracy based on
the number of layers is less than 5%, it appears that using more layers results in higher accuracy.
This makes sense as more layers allows for greater complexity of the model therefore improving
model’s classification abilities.

7.2.4 Learning Rate Studies

The previous hyperparameter studies focused on smaller networks in order to maintain or slightly
improve training and validation accuracy while possibly improving training time. However, for the
learning rate studies, we trained on much larger neural networks. The hyperparamters were kept
the same as the previous studies, except that the number of layers was set to 128.

One method of improving training and validation accuracy is via step schedulers which are
discussed in Section 4.2.4. To optimize this kind of learning rate scheduler, we ran coarse learning
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Figure 7.7: (a) Training and (b) Validation accuracy for number of layer studies over the span of
1000 epochs

0kMU 100kMU 180kMU

12 21 44 12 21 44 12 21 44

12 84.3 8.8 6.9 12 84.2 9.0 6.8 12 84.7 8.3 7.0
21 8.8 84.7 6.5 21 9.2 84.2 6.6 21 8.3 84.8 6.8
44 5.9 5.9 88.2 44 5.6 5.9 88.5 44 5.4 5.9 88.7

Figure 7.8: Confusion matrix for 0kMU, 100kMU, and 180kMU dose rates. The fully connected
network was trained with 150MeV beams on true and false doubles data using a step-scheduler
over 5000 epochs.

rates for 5000 epochs and determined at which epoch would be ideal for reducing the size of the
learning rate. In a recursive order, we optimized a scheduler based on this method starting with a
learning rate of 10−3 and ending training with a learning rate of 10−6. We noticed that for larger
learning rates, i.e., 10−2, the model did not properly train as the learning rates were too coarse,
which eventually lead to NaN values. For smaller learning rates, i.e., 10−7, the learning rates were
too small to have a significant impact on the training and validation accuracies. As such, the step
schedulers did not use any values larger than 10−3 or smaller than 10−6.

Through the use of a constant learning rate of 10−3, we noticed that after a few hundred epochs,
the model’s accuracy, which peaked around 70%, started dropping, indicating that the learning rate
was too coarse for continued training. As such, we used the baseline accuracy of the neural network
as the peak of the training and validation accuracy before both metrics tanked. In comparison,
using the learning rate step scheduler improved the training and validation accuracy more than
15%.

7.2.5 Maximizing Training and Validation Accuracy on True and False Doubles

For these studies, we added a third class, false doubles, and accompanying data. The hyperparam-
eter values were set based on the previous studies, except for the learning rate value, where a new
study was conducted to find a new optimal step-based learning rate scheduler.

Figure 7.8 displays three confusion matrices, one for the differing dose rates. The leftmost
column is the correct input class and the percent in each proceeding column represents the amount
of data put into the class at the top of the column. The cells are shaded based on their current
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(a) Uncleaned (b) Cleaned (c) Dose

Figure 7.9: Comparison of reconstructed prompt gamma rays with (a) uncleaned double data and
(b) cleaned double data to the (c) dose delivered by the proton beam.

accuracy relative to the largest accuracy in each submatrix. The darkest entry in each row is the
dominant classification of the input class. Within the matrices, there are three different labels:
12, 21, and 44. Label 12 represents the case where both interactions are correctly ordered and no
corrections need to be made. Label 21 represents the scenario where the second interaction should
be first and the first interaction should be second. The third label 44, is a false event, where the
two interactions are actually two singles.

For each of the confusion matrices, the dominant classification for each input class is the class
itself. This indicates that the model is able to correctly classify most samples. The matrix values
between the dose rates do not appear to change by more than 1%, where higher dose rates have
slightly higher accuracies. We see that the neural network classifies false events with around a 4%
higher accuracy for all three dose rates compared to the true doubles events.

7.2.6 Reconstructions for True and False Doubles Data

Based on the classifications of the data from the neural network, we created a new data set of
cleaned data, where events classified as false events were removed and the misordered events were
reordered.

We cleaned the data with best performing neural network and then did reconstructions, seen in
Figure 7.9, of the (a) uncleaned data, (b) cleaned, and (c) original dose. Ultimately, we want the
reconstruction images to resemble the original dose as shown in Figure 7.9(c). When comparing
the Figure 7.9(a) and (b), we see that the cleaned data has removed a significant portion of the
noise as seen in uncleaned reconstruction. When we look at the difference between Figure 7.9(b)
and Figure 7.9(c) there still is visual noise in the cleaned data that can be removed.

7.3 Random Forest Studies

A small discussion of the random forest method can be seen in Section 4.1. Training a neural
network is very time consuming and is not always the right tool for the job. In some cases simpler
systems like random forests are often preferable and feature better explainability than neural net-
works. We train over a collection of hyperparameters using sklearn’s RandomForestClassifier for
classification and sklearn’s RandomizedCVSearch for hyperparameter tuning given the collection of
hyperparameters mentioned in Table 7.1. Only the random forest with the best accuracy will be
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Hyperparameter Values

min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4

max_depth 10, 20, 30, 40, 50
max_features auto, sqrt, log2
bootstrap true and false

Table 7.1: This table is the collection of all hyperparameter names and values used when training
random forest in Section 7.3. The left column is the name of the hyperparamter and the right
column is the collection of possible values that the hyperparameter could possess when searching
for the best random forest.

Hyperparameter Value

min_samples_split 5
min_samples_leaf 2

max_depth 50
max_features auto

bootstrap false

Table 7.2: This table is the collection of all hyperparameter names and values used in the best
random forest in Section 7.3.

considered and evaluated.
Figure 7.10 is a confusion matrix which is generated by a random forest, whose parameters

are listed in Table 7.2, classifying the MCDE test1 150MeV 20kMU beam data. The first column
of the table is the input class and the every proceeding column is the percentage of input which
was assigned to class at the top of column. Each cell is colored by accuracy relative to the largest
percentage present in entire confusion matrix. The doubles-to-triples and 444 entries are entirely 0

123 132 213 231 312 321 124 214 134 314 234 324 444
123 60.1 13.5 14.6 4.5 2.9 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 14.1 53.3 3.6 5.1 20.2 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 13.9 4.3 57.5 17.1 4.9 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
231 4.3 8.1 10.6 60.0 3.7 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
312 4.8 8.9 7.8 3.0 63.7 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
321 8.8 3.6 4.7 13.3 12.7 57.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
214 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.10: Confusion matrix for a random forest trained on true triples data from a 150MeV
0kMU beam and tested on the MCDE model test1 150MeV 20k beam. The doubles-to-triples and
444 entries are entirely 0 because any classification of non-true triple data by a network not trained
with it is meaningless. This rows and columns which are entirely zeroes are left on the confusion
matrix for consistency with the results in Section 7.4.3.
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 60.6 14.6 15.1 3.7 2.6 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 12.8 52.9 3.5 4.7 22.7 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 14.6 3.8 54.6 19.1 5.3 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
231 2.8 7.3 10.7 61.3 3.6 14.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
312 4.5 7.8 7.4 2.9 63.5 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
321 8.7 3.8 4.8 12.4 13.4 57.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
214 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.11: Confusion matrix for a random forest trained on true triples data from a 150MeV
0kMU beam and tested on the MCDE model test1 150MeV 100k beam. The doubles-to-triples and
444 entries are entirely 0 because any classification of non-true triple data by a network not trained
with it is meaningless. This rows and columns which are entirely zeroes are left on the confusion
matrix for consistency with the results in Section 7.4.3.

because any classification of non-true triple data by a network not trained with it is meaningless.
This rows and columns which are entirely zeroes are left on the confusion matrix for consistency
with the results in Section 7.4.3.

We see that the dominant classification for each row is the input class itself. For the 123 class
we see that the second and third highest classifications result in around 30% of the data and the
remaining 10% is spread among the remaining classes. The observation that the 2nd and 3rd
highest classifications soak around 30% of the data is consistent for each input class but there is
not consistent reason reason why any input class may be put into the dominant incorrect classes.
The 123 class’ top classifications are 123, 213, 132 and the 312 class’ top classifications are 312,
321, 132. Why is the 2nd highest classification of 123 213 and the 3rd highest classification 132?
Why is the 2nd highest classification of 312 321 and the 3rd highest classification 132? There is no
answer which currently can consistently explain what the input class, say 123, has in connection to
a dominant misclassification like say 213.

Figure 7.11 is a confusion matrix which is generated by a random forest, whose parameters
are listed in Table 7.2, classifying the MCDE test1 150MeV 20kMU beam data. The first column
of the table is the input class and the every proceeding column is the percentage of input which
was assigned to class at the top of column. Each cell is colored by accuracy relative to the largest
percentage present in entire confusion matrix. The DtoT and 444 entries is entirely 0 because any
classification of non-true triple data by a network not trained with it, is meaningless. This rows
and columns which are entirely 0 are left on the confusion matrix for consistency with the results
in Section 7.4.3.

The conclusions made about Figure 7.10 also hold in their entirety for the triples and in Fig-
ure 7.11 with exceptions for the exact percentages mentioned.

Figure 7.12 is a confusion matrix which is generated by a random forest, whose parameters
are listed in Table 7.2, classifying the MCDE test1 150MeV 20kMU beam data. The first column
of the table is the input class and the every proceeding column is the percentage of input which
was assigned to class at the top of column. Each cell is colored by accuracy relative to the largest
percentage present in entire confusion matrix. The DtoT and 444 entries is entirely 0 because any
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 62.7 14.9 11.8 3.6 1.9 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 11.5 58.7 2.2 4.6 19.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 15.2 4.3 55.4 18.8 3.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
231 4.8 8.7 9.2 56.1 4.8 16.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
312 4.8 8.2 6.5 2.2 64.8 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
321 8.2 4.6 6.3 10.6 13.5 56.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
214 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.12: Confusion matrix for a random forest trained on true triples data from a 150MeV
0kMU beam and tested on the MCDE model test1 150MeV 180k beam. The doubles-to-triples and
444 entries are entirely 0 because any classification of non-true triple data by a network not trained
with it is meaningless. This rows and columns which are entirely 0 are left on the confusion matrix
for consistency with the results in Section 7.4.3.

classification of non-true triple data by a network not trained with it, is meaningless. This rows
and columns which are entirely 0 are left on the confusion matrix for consistency with the results
in Section 7.4.3.

The conclusions made about Figure 7.10 also hold in their entirety for the triples and in Fig-
ure 7.12 with exceptions for the exact percentages mentioned.

We also have four additional MCDE testing tests at each of the previously used dose rates.
All of the conclusions made about Figures 7.10, 7.11, and 7.12 all hold for the unlisted results
mentioned. There are differences in the exact percentages but the general relationships discussed
are identical.

As we will see in Section 7.4.1 the random forest performed considerably worse than the neural
network. The maximum classification percentage of the random forest on the test1 20kMU beam
was 63.7% and the worst was 53.3% for the dominant classification. The maximum classification
percentage of the neural network on the test1 20kMU beam was 87.6% and the worst was 85.8%
for the dominant classification. The random forest performed around 30% worse than the neural
network. The random forest model when saved to disk using the joblib library with compression
level 3 was 11 gigabytes. The neural network when saved using Keras’ Model.save method uses
203 megabytes. The neural network outperforms the random forest in classification while using
considerably less disk space. Both methods are fast enough to be used for data processing. We
need a minimum of 80% classification accuracy for each class with a preferred accuracy greater
than 95% for real world usage.

7.4 Expanding Three Scatter Data Sets

Due to the problems discussed in Section 7.1 we wanted to slowly expand our network’s classification
coverage. First starting with only true triples, then adding in doubles-to-triples, finishing with the
inclusion of false triples. This allows us to gauge how the increase in data complexity is impacting
the network’s ability to learn.
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Hyperparameter Value

Learning Rate See Section 4.2.4
Dropout 45%

Inter-Layer Activation LeakyReLU
Number of Hidden Layers 256

Neurons per Layer 256
Residual Block Size 8 Layers

Number of Residual Blocks 32
Final Activation Softmax

Batch Size 4096

Table 7.3: These hyperparameters determine the structure of the deep fully connected network
used in Section 7.4.1

123 132 213 231 312 321 124 214 134 314 234 324 444
123 86.8 4.2 1.8 2.7 2.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 3.1 87.3 1.9 2.2 2.6 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 1.8 3.4 86.5 3.6 2.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
231 2.8 2.0 3.1 87.5 3.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
312 2.9 1.8 2.0 2.8 87.6 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
321 1.8 3.2 3.7 1.9 3.5 85.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
214 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.13: Confusion matrix for a fully connected network trained on true triples from a 150MeV
0kMU beam The testing data used is the from the MCDE model test1 data 150MeV 20kMU beam
data. Each cell is colored by accuracy relative to the largest percentage present in entire confusion
matrix. The doubles-to-triples and 444 entries are entirely 0 because any classification of data by a
network not trained on similar data is meaningless. The rows and columns containing only zeroes
remain in the matrix for consistency with the results in Section 7.4.3.

7.4.1 Triples Only

The true triples data set is the simplest of the three data sets used for training in Section 7.4. Every
event in the input data is a triple which could be used for reconstruction if the interactions were
correctly ordered. As discussed in Section 5.2 only the 123 class can be used for reconstruction. Any
triple we correctly order from the 132, 213, 231, 312, 321 classes will yield a positive contribution
to our reconstructed image. Any triple ordering other than 123 will pollute the reconstruction
and only add noise to the final image. If the network can properly classify the true triples data
set then we know that the network can correctly identify underlying patterns which indicate the
real ordering of any given true triple. If the network can understand patterns within the true
triple data set then it may be possible for the network to understand more complex scenarios like
doubles-to-triples and false data in terms of three interaction events.

Figure 7.13 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.3, classifying the MCDE model test1 150MeV 20kMU beam data.
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 87.5 3.4 2.0 3.3 2.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 2.6 87.7 2.3 2.5 3.1 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 2.5 3.0 85.4 4.6 2.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
231 3.0 1.4 3.1 88.3 2.6 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
312 1.8 1.3 2.8 2.6 88.6 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
321 1.7 3.2 3.4 2.3 4.5 84.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
214 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.14: Confusion matrix for a fully connected network trained on true triples from a 150MeV
0kMU beam The testing data used is the from the MCDE model test1 data 150MeV 100kMU beam
data. Each cell is colored by accuracy relative to the largest percentage present in entire confusion
matrix. The doubles-to-triples and 444 entries are entirely 0 because any classification of data by a
network not trained on similar data is meaningless. The rows and columns containing only zeroes
remain in the matrix for consistency with the results in Section 7.4.3.

The first column of the table is the input class and every proceeding column is the percentage
of input which was assigned to the class at the top of column. Each cell is colored by accuracy
relative to the largest percentage present in entire confusion matrix. The doubles-to-triples and 444
entries are entirely 0 because any classification of data by a network not trained on similar data is
meaningless. The rows and columns containing only zeroes remain in the matrix for consistency
with the results in Section 7.4.3.

We see that the dominant classification for each row is the input class itself. The remaining
cell accuracies in each row are within 3% of the remaining cells in the respective row. Less than
16% of all remaining data was miclassified during the classification process. This means that the
neural network is capable of understanding how the patterns within the input data map to a given
output class. Given these results we were confident that we could integrate more complicated data
and maintain optimistic expectations of the neural network’s performance.

Figure 7.14 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.3, classifying the MCDE model test1 150MeV 100kMU beam data.
The first column of the table is the input class and every proceeding column is the percentage of
input which was assigned to class at the top of column. Each cell is colored by accuracy is relative
to the largest percentage present in entire confusion matrix. The DtoT and 444 entries are entirely
0 because any classification of data by a network not trained on similar data is is meaningless. This
row and column is left on the confusion matrix for consistency with the results in Section 7.4.3.

The conclusions made about Figure 7.13 also hold in their entirety for the true triples in Fig-
ure 7.14 with exceptions for the exact percentages mentioned.

Figure 7.15 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.3, classifying the MCDE model test1 150MeV 20kMU beam data.
The first column of the table is the input class and every proceeding column is the percentage of
input which was assigned to class at the top of column. Each cell is colored by accuracy is relative
to the largest percentage present in entire confusion matrix. The DtoT and 444 entries are entirely
0 because any classification of data by a network not trained on similar data is is meaningless. This
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 85.6 6.0 1.7 2.2 2.6 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 2.4 88.5 1.9 1.4 3.8 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 1.2 2.7 88.4 3.6 2.4 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
231 3.1 1.9 4.1 84.8 4.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
312 2.7 2.7 1.0 2.2 89.2 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
321 1.9 1.9 4.3 1.4 1.9 88.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
214 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
314 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.15: Confusion matrix for a fully connected network trained on true triples from a 150MeV
0kMU beam The testing data used is the from the MCDE model test1 data 150MeV 180kMU beam
data. Each cell is colored by accuracy relative to the largest percentage present in entire confusion
matrix. The doubles-to-triples and 444 entries are entirely 0 because any classification of data by a
network not trained on similar data is meaningless. The rows and columns containing only zeroes
remain in the matrix for consistency with the results in Section 7.4.3.

row and column is left on the confusion matrix for consistency with the results in Section 7.4.3.
The conclusions made about Figure 7.13 also hold in their entirety for the true triples in Fig-

ure 7.15 with exceptions for the exact percentages mentioned.
In the real world we will not know if a given input is a true triple or not. If a given input

happens to be a true triple then we have no way to determine its real ordering. Given this, these
results on their own do not tell us whether or not the network in its current stage can aid in real
world reconstructions. These results to give us the ability to have optimistic expectations about the
neural networks ability to classify more complex data which are of closer to real world scenarios.

We also have four additional MCDE testing tests at each of the previously used dose rates.
All of the conclusions made about Figures 7.13, 7.14, and 7.15 all hold for the unlisted results
mentioned. There are differences in the exact percentages but the general relationships discussed
are identical.a

The neural network performed considerably better than the random forest in Section 7.3. The
maximum classification percentage of the random forest on the test1 20kMU beam was 63.7% and
the worst was 53.3% for the dominant classification. The maximum classification percentage of the
neural network on the test1 20kMU beam was 87.6% and the worst was 85.8% for the dominant
classification. The random forest performed around 30% worse than the neural network. The
random forest model when saved to disk using the joblib library with compression level 3 was 11
gigabytes. The neural network when saved using Keras’ Model.save method uses 203 megabytes.
The neural network outperforms the random forest in classification while using considerably less
disk space. Both methods are fast enough to be used for data processing. We need a minimum of
80% classification accuracy for each class with a preferred accuracy greater than 95% for real world
usage.
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Figure 7.16: Training and validation plot for a fully connected network trained on triples from
a 150MeV 0kMU beam and double to triples from a 150MeV 100kMU using ≈21k epochs. The
validation data is 20% of the initial data.

7.4.2 Triples and Doubles-to-Triples

Our previous network configuration showed promising results for classifying true triples which has
only 6 possible output classes. In this section we expand our data set to include true triples and
doubles-to-triples. As stated in Section 5.2 the DtoT events have 6 possible classes: 124, 214, 134,
314, 234, 324. By merging the DtoT events with the true triples we are doubling the amount
of output classes that our neural network will have to classify. The DtoT events have the added
difficulty of having a single interaction which does not belong in the triplet. It is up to our neural
network to determine which of the three interactions does not belong and also determine the correct
order of the remaining pair. This also raises the issue that the network could start to put true
triples, of any ordering, into the DtoT classes which removes their third interaction while also
possibly destroying the ordering of the remaining pair.

Our network was trained on 400k triples and 400k doubles-to-triples making 800k total events.
We used 20% of the data for validation and the remaining 80% for training. We used the Keras
tensorflow.Keras.Models.Model.fit method for training and validation.

In Figure 7.16 we trained a deep fully connected neural network with the structural hyper-
parameters listed in Table 7.3. In order to account for the increased data complexity born from
using the DtoT with true triples we made two training changes compared to the training regime in
Section 7.4.1. First we increased the number of epochs significantly to approximately 21k epochs.
We also increased the gap of the tightening compared to training regime in Section 7.4.1 and the
gap increases between each step. This was done to allow as much learning as possible at each stage
of training while trying to account for possible plateaus.
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 74.0 3.6 1.8 2.2 2.5 1.4 8.2 0.6 0.2 0.1 4.1 1.5 0.0
132 3.4 74.2 2.2 1.7 2.0 2.5 0.3 0.0 7.6 0.7 1.2 4.2 0.0
213 2.0 3.1 73.4 2.4 1.5 2.2 0.9 7.9 4.9 1.7 0.1 0.1 0.0
231 2.5 2.1 3.4 73.1 2.9 1.8 0.0 0.2 1.7 3.7 7.8 0.9 0.0
312 2.5 2.0 1.6 2.5 73.1 3.2 4.9 1.6 0.7 7.6 0.1 0.3 0.0
321 1.7 2.5 3.1 1.9 3.2 72.8 1.3 3.7 0.0 0.4 0.9 8.4 0.0
124 3.4 0.4 0.6 0.1 2.2 1.6 78.7 8.3 0.9 0.9 0.6 2.1 0.0
214 0.6 0.2 3.9 0.1 1.5 2.5 8.8 78.5 0.4 1.9 0.7 0.9 0.0
134 0.5 3.8 2.9 1.6 0.3 0.2 0.9 0.6 79.4 7.1 1.9 0.7 0.0
314 0.0 0.5 1.6 3.6 4.6 0.4 0.8 1.6 8.3 76.7 0.7 1.3 0.0
234 2.6 1.6 0.1 5.0 0.1 0.4 0.7 1.5 2.1 0.8 76.3 8.6 0.0
324 0.9 3.5 0.1 0.4 0.1 4.1 1.6 0.3 0.6 0.9 6.8 80.7 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.17: Confusion matrix for a fully connected network trained on triples from a 150MeV
0kMU beam and double to triples from a 150MeV 100kMU. The testing data used is the from the
MCDE model test1 data 150MeV 20kMU beam data. Each cell is colored by accuracy relative to
the largest percentage present in entire confusion matrix. The 444 entries are entirely 0 because any
classification of data by a network not trained on similar data is meaningless. The rows and columns
containing only zeroes remain in the matrix for consistency with the results in Section 7.4.3.

We can see that the first huge spike in accuracy starts at 0 epochs where the network immediately
obtains 40% validation and training accuracy. The slope of the line becomes less steep as the
network is trying to fit with the randomly dropped neurons. Eventually the network seems to have
fit the neurons well enough to plateau just before 5k epochs. This plateau holds until the sudden
spike in accuracy at 8192 epochs where the learning rate is tightened from 10−3 to 10−4. The
network continues to learn at a slow but steady rate until a tiny spike in accuracy occurs at 16384
epochs where the learning rate tightens from 10−4 to 10−5. The accuracy plateaus after this point
increasing by fractions of a percent. The final tightening had little impact on the overall accuracy
of the network.

An interesting observation is that the validation accuracy is considerably higher than the train-
ing accuracy. The exact reason for this occurrence is not completely known but this occurs for
us when then dropout rate is greater than 0. One possible reason is that the training data is
passed through the network with the dropout layers on but the validation data is passed through
the network with the dropout layers off. The network gets to classify the validation data using all
neurons rather than just some of the neurons. This increases the number of neurons present during
validation which may allow the network to perform better on the unseen than the training data.

Figure 7.17 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.3, classifying the MCDE model test1 150MeV 20kMU beam data.
The first column of the table is the input class and every proceeding column is the percentage of
input which was assigned to class at the top of column. Each cell is colored by accuracy relative to
the largest percentage present in entire confusion matrix. The 444 entries are entirely 0 because any
classification of data by a network not trained on similar data is meaningless. The rows and columns
containing only zeroes remain in the matrix for consistency with the results in Section 7.4.3.

We see that the dominant classification for each row is the input class itself. The second highest
classification percent for most classes of triple is the DtoT version of itself. This means that the
network correctly identifies the first two interactions the best and, at times, struggles to correctly
identify whether the third interaction truly belongs in the triplet. If we want to make light of this
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 73.7 4.2 1.7 2.5 2.2 1.0 6.7 1.0 0.3 0.0 5.2 1.3 0.0
132 2.6 74.4 1.9 1.6 1.5 1.6 0.1 0.0 9.7 0.8 1.4 4.3 0.0
213 2.3 3.3 72.7 3.0 2.6 1.2 1.0 6.5 5.6 1.5 0.1 0.1 0.0
231 2.5 1.0 3.2 74.2 2.8 2.7 0.1 0.4 1.9 3.7 6.9 0.7 0.0
312 1.5 1.8 2.1 2.7 75.9 3.1 3.9 1.2 0.7 6.6 0.0 0.4 0.0
321 1.0 2.7 3.0 2.3 4.9 70.9 1.7 4.5 0.1 0.4 0.3 8.2 0.0
124 4.4 0.3 0.4 0.0 2.4 1.3 79.1 8.0 0.9 0.7 0.7 1.7 0.0
214 0.5 0.2 4.2 0.3 1.1 3.4 7.6 78.5 0.8 1.9 0.7 0.8 0.0
134 0.2 4.7 2.2 1.4 0.4 0.0 0.9 0.7 78.6 8.2 2.0 0.5 0.0
314 0.1 0.7 1.3 2.6 4.2 0.2 0.5 1.4 8.7 78.2 0.7 1.5 0.0
234 2.7 1.5 0.4 4.1 0.1 0.3 0.6 0.7 1.4 0.8 78.9 8.5 0.0
324 1.0 2.2 0.2 0.8 0.5 3.7 1.5 0.6 1.0 0.7 7.7 80.1 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.18: Confusion matrix for a fully connected network trained on triples from a 150MeV
0kMU beam and double to triples from a 150MeV 100kMU. The testing data used is the from the
MCDE model test1 data 150MeV 100kMU beam data. Each cell is colored by accuracy relative to
the largest percentage present in entire confusion matrix. The 444 entries are entirely 0 because any
classification of data by a network not trained on similar data is meaningless. The rows and columns
containing only zeroes remain in the matrix for consistency with the results in Section 7.4.3.

idea we can say that this percentage of classification still produces a valid true double which does
have some use during reconstruction. Even more interesting is that the third highest classification
yields another valid double! This tells us that the network is also likely to throw away the first
interaction and keep the remaining two interactions and correctly order them. Take the 213 input
class. The top 3 dominant classifications are 213 at 73.4%, 214 at 7.9%, and 134 at 4.9%. Given a
collection of 213 events, which are 100% unusable, we get 73% back as perfectly ordered triples and
13% as perfectly ordered doubles. The remaining 14% pollute our data. This is a large amount
of data recovered which would otherwise cause noise during reconstruction. The other classes of
triple, like 123, where the third highest classification is another triple which only contributes more
noise.

For the DtoT this behavior is not bi-directional. We see that the second highest classification
for each DtoT event is actually a reverse ordering. The neural network can determine which of
the three interaction does not belong to the pair but, after doing so, is unsure of the ordering
given the remaining two interactions. The third highest classification is a triple where the two
true interactions are correctly ordered but the third interaction stays attached. It is more difficult
to spin this behavior in a more positive light. An incorrect classification of a DtoT is likely to
only generate a misordered double or noise. It may be useful to pass a classified DtoT to the
doubles classification network to help recover some of the misordered doubles but it is also likely
that this idea only compounds the errors. Regardless we recognize that any DtoT is unusable for
reconstruction and, as such, any improvement is welcomed.

Figure 7.18 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.3, classifying the MCDE model test1 150MeV 100kMU beam data.
The first column of the table is the input class and the every proceeding column is the percentage
of input which was assigned to class at the top of column. Each cell is colored by accuracy relative
to the largest percentage present in entire confusion matrix. The 444 entry is entirely 0 because any
classification of false data by a network not trained with it is meaningless. The rows and columns
containing only zeroes remain in the matrix for consistency with the results in Section 7.4.3.
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123 132 213 231 312 321 124 214 134 314 234 324 444
123 71.9 5.3 2.6 1.2 2.6 1.7 8.2 0.7 0.0 0.0 3.4 2.4 0.0
132 2.4 76.2 1.4 1.0 1.0 1.9 0.2 0.0 7.2 0.7 1.4 6.5 0.0
213 1.4 1.9 73.0 3.4 1.7 2.2 0.5 9.4 4.3 1.7 0.5 0.0 0.0
231 2.7 1.2 4.6 70.1 4.3 2.7 0.2 0.2 1.0 4.3 8.2 0.5 0.0
312 1.4 2.9 0.7 2.2 74.0 3.1 5.5 1.2 0.7 7.7 0.0 0.5 0.0
321 1.4 2.2 3.6 1.2 3.4 72.8 2.2 5.1 0.0 0.0 1.0 7.2 0.0
124 3.8 0.6 0.2 0.1 2.4 1.7 79.6 7.9 1.2 0.5 0.6 1.4 0.0
214 0.8 0.0 3.2 0.3 1.5 2.5 8.1 79.3 0.5 1.7 1.2 0.9 0.0
134 0.2 4.2 2.1 1.2 0.7 0.0 0.7 0.7 78.9 8.2 2.1 1.0 0.0
314 0.1 0.5 0.7 3.2 4.4 0.3 0.7 2.0 7.5 78.2 0.6 1.7 0.0
234 2.9 1.0 0.5 3.1 0.1 0.6 0.6 0.9 1.3 0.6 79.3 9.1 0.0
324 1.4 2.7 0.1 0.6 0.2 3.8 2.1 0.3 1.2 0.7 7.8 79.2 0.0
444 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7.19: Confusion matrix for a fully connected network trained on triples from a 150MeV
0kMU beam and double to triples from a 150MeV 100kMU. The testing data used is the from the
MCDE model test1 data 150MeV 180kMU beam data. Each cell is colored by accuracy relative to
the largest percentage present in entire confusion matrix. The 444 entries are entirely 0 because any
classification of data by a network not trained on similar data is meaningless. The rows and columns
containing only zeroes remain in the matrix for consistency with the results in Section 7.4.3.

The conclusions made about Figure 7.17 also hold in their entirety for the triples and DtoT in
Figure 7.18 with exceptions only in the exact percentages mentioned.

Figure 7.19 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.3, classifying the MCDE model test1 150MeV 180kMU beam data.
The first column of the table is the input class and the every proceeding column is the percentage
of input which was assigned to class at the top of column. Each cell is colored by accuracy relative
to the largest percentage present in entire confusion matrix. The 444 entry is entirely 0 because any
classification of false data by a network not trained with it is meaningless. The rows and columns
containing only zeroes remain in the matrix for consistency with the results in Section 7.4.3.

The conclusions made about Figure 7.17 also hold in their entirety for the triples and DtoT in
Figure 7.19 with exceptions for the exact percentages mentioned.

We also have four additional MCDE testing tests at each of the previously used dose rates. For
these additional but unlisted results, the conclusions made about Figures 7.17, 7.18, and 7.19 all
hold true. There are differences in the exact percentages but the general relationships discussed
are identical. The results and the conclusions of these studies were used in [3].

7.4.3 Triples, Doubles-to-Triples, and False Data

The results in Section 7.4.2 showed that the neural network configuration was capable of handling
true and partially true data. At this point we aim to expand the data to include all possible
classes which means the usage of false data on top of true triples and DtoTs. The false data is
simply labeled as 444 and only adds one additional class but the data itself is completely worthless
in regards to reconstruction value as is discussed in Section 3. Any amount of data which slips
through the classification process cannot be recovered or used for anything and will pollute the
reconstruction results. In order to get enough simulated false data we had to do hundreds of
simulations and merge all of the false data from them. This provides us with enough false data
to have balanced classes. The 444 class has as much data as any of the other classes. While not
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Hyperparameter Value

Learning Rate See Section 4.2.4
Dropout 45%

Inter-Layer Activation LeakyReLU
Number of Hidden Layers 512

Neurons per Layer 256
Residual Block Size 8 Layers

Number of Residual Blocks 64
Final Activation Softmax

Batch Size 8192

Table 7.4: The hyperparameters which determine the structure of the deep fully connected network
used in Section 7.4.3

123 132 213 231 312 321 124 214 134 314 234 324 444
123 77.3 3.2 1.4 2.1 2.7 1.6 6.9 0.5 0.2 0.0 2.9 0.8 0.4
132 2.8 77.5 2.0 1.5 2.3 2.5 0.3 0.0 6.5 0.4 1.0 2.9 0.3
213 1.4 2.6 77.7 2.8 1.6 2.2 0.6 6.4 3.3 1.1 0.1 0.0 0.2
231 2.9 1.7 2.8 78.4 2.9 1.6 0.1 0.2 0.8 2.5 5.5 0.5 0.2
312 2.7 1.2 1.5 2.2 79.8 2.3 3.1 1.2 0.5 5.3 0.0 0.2 0.1
321 1.5 2.7 3.1 1.7 3.2 78.4 0.9 2.5 0.0 0.2 0.5 5.1 0.3
124 3.5 0.2 0.6 0.1 2.8 1.8 74.0 8.3 0.4 0.4 0.4 1.3 6.2
214 0.4 0.3 3.7 0.3 1.5 2.8 7.3 76.8 0.3 1.2 0.4 0.3 4.8
134 0.4 3.8 3.0 2.1 0.4 0.1 0.5 0.4 75.8 7.4 1.1 0.7 4.1
314 0.0 0.6 1.8 4.0 5.4 0.3 0.8 0.8 6.2 73.8 0.1 0.8 5.2
234 2.4 1.5 0.1 5.7 0.2 0.9 0.2 0.7 1.3 0.4 72.9 7.8 5.9
324 1.1 3.2 0.2 0.5 0.2 5.2 1.3 0.3 0.6 0.7 6.4 75.9 4.4
444 0.3 1.3 0.3 0.9 0.0 0.3 4.7 5.0 1.9 3.4 5.0 6.0 70.8

Figure 7.20: Confusion matrix for a fully connected network trained on triples, double to triples,
and false data from a 150MeV train for approximately 18k epochs and tested on the MCDE model
test1 150MeV 20k beam. Each cell is colored by accuracy relative to the largest percentage present
in entire confusion matrix.

immediately obvious, we do end up with some conceptual contention for what it means to have
truly balanced classes. We have 6× more triples and 6× more DtoT than we do false triples but
triples and DtoTs are both are split into 6 different classes. What counts as balance is a hard
question in the context of our problem so we opt for an equal number of records in each class over
other possible interpretations.

Our network was trained on 840k triples, 840k DtoT, and 140k false triples making 1.8M total
events. We used 20% of the data for validation and the remaining 80% for training. We used the
Keras tensorflow.Keras.Models.Model.fit method for training and validation.

Figure 7.20 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.4, classifying the MCDE model test1 150MeV 20kMU beam data.
The first column of the table is the input class and the every proceeding column is the percentage
of input which was assigned to class at the top of column. Each cell is colored by accuracy relative
to the largest percentage present in entire confusion matrix.

We see that the dominant classification for each row is the input class itself. The second highest
classification percent for most classes of triple is the double-to-triple version of itself. This means
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that the network correctly identifies the first two interactions the best and, at times, struggles to
correctly identify whether the third interaction truly belongs in the triplet. If we want to make
light of this idea we can say that this percentage of classification still produces a valid true double
which does have some use during reconstruction. Even more interesting is that the third highest
classification yields another valid double! This tells us that the network is also likely to throw
away the first interaction and keep the remaining two interactions and correctly order them. The
true triples are very rarely mistaken as false data. Take the 213 input class. The top 3 dominant
classifications are 213 at 77.7%, 214 at 6.4%, and 134 at 3.3%. Given a collection of 213 events
which are 100% unusable. We get 78% back as perfectly ordered triples and 9% as perfectly
ordered doubles. The remaining 13% pollute our data. This is a large amount of data recovered.
The other classes of triple, like 123, where the third highest classification is another triple which
only contributes more noise.

For the DtoT we see that the second highest classification for each DtoT event is actually
a reverse ordering. The neural network can determine which of the three interaction does not
belong to the pair but, after doing so, is unsure of the ordering given the remaining two. In hopes
of alleviating the DtoT event being cast as misordered doubles it may be useful to pass classified
doubles-to-triples to the doubles classification network but it is also likely this idea only compounds
the errors. The third highest classification for some inputs is a triple where the two true interactions
are correctly ordered but the third interaction, a improperly coupled single, stays attached. This
makes the DtoT appear as a valid triple and creates noise during reconstruction. Other DtoT have
false events as their third highest classification. If a DtoT is classified as a false event and is thrown
away then this is still more optimal than having it incorrectly used as a true triple. In the context
of reconstruction no data is better than bad data. Regardless we recognize that a DtoT without
adjustments is unusable for reconstruction and, as such, any improvement is welcomed.

The false data classification is a more interesting story. Any improper classification of false data
means that we are guaranteed to see noise occur in our reconstruction. The dominant classification
of false events is false events which yields a very positive outcome. The majority of the incorrect
classifications of the false data fall directly into the DtoT classes. Very few false events fall into
the true triple categories. A false triple being classified as a DtoT means that we now have a false
double being passed through the system. There is no reason to believe that a false triple with
an interaction removed will be fundamentally different than a naturally occurring false double. If
we were to then pass that false double to the double classification network it has an 80% chance
of being removed entirely. This means that of the roughly 26% of false events classified as DtoT
events, assuming an 80% removal rate via the double classification network, only around 5% will
make it through to the final reconstruction process. Of course it would be most optimal if the
triple classification network did not need additional assistance but, in general, these results are not
nearly as bad they seem on the surface when you follow this train of thought. Of course additional
experimentation and testing will be needed in order to fully verify these ideas.

Figure 7.21 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.4, classifying the MCDE model test1 150MeV 20kMU beam data.
The first column of the table is the input class and the every proceeding column is the percentage
of input which was assigned to class at the top of column. Each cell is colored by accuracy relative
to the largest percentage present in entire confusion matrix.

The conclusions made about Figure 7.20 also hold in their entirety for the triples, DtoT, and
false data in Figure 7.21 with exceptions to the exact percentages mentioned.

Figure 7.22 is a confusion matrix which is generated by a fully connected neural network, whose
parameters are listed in Table 7.4, classifying the MCDE model test1 150MeV 20kMU beam data.
The first column of the table is the input class and the every proceeding column is the percentage

34



123 132 213 231 312 321 124 214 134 314 234 324 444
123 79.1 2.3 1.5 2.2 1.7 1.5 5.6 0.7 0.1 0.0 3.9 1.0 0.2
132 2.6 76.0 2.0 1.7 2.8 1.9 0.1 0.0 7.7 0.4 1.2 3.5 0.1
213 1.7 2.5 76.4 3.7 2.0 2.0 0.4 5.5 3.9 1.2 0.3 0.1 0.2
231 3.0 1.4 2.8 80.7 2.2 1.7 0.1 0.2 1.3 1.8 4.4 0.1 0.2
312 1.8 0.8 2.1 2.0 82.4 2.6 2.2 0.5 0.2 4.7 0.1 0.2 0.2
321 1.7 2.6 3.7 1.5 3.5 76.5 1.2 3.9 0.0 0.4 0.2 4.4 0.4
124 5.0 0.3 0.4 0.0 2.9 1.4 76.0 7.0 0.6 0.4 0.2 1.1 4.7
214 0.5 0.2 4.1 0.2 1.5 3.5 7.6 75.0 0.5 1.1 0.5 0.3 4.9
134 0.2 4.3 2.3 1.7 0.5 0.1 0.6 0.5 75.4 7.9 1.0 0.3 5.3
314 0.1 0.4 1.4 3.4 4.9 0.2 0.3 0.8 7.0 75.4 0.2 1.0 4.9
234 3.1 1.5 0.5 5.4 0.1 0.5 0.4 0.5 1.0 0.4 73.6 7.1 5.8
324 1.0 2.3 0.1 0.7 0.4 5.1 1.1 0.2 0.6 0.4 6.5 75.3 6.2
444 0.6 0.2 0.4 0.5 0.8 0.5 4.2 3.8 5.1 4.0 3.9 3.5 72.6

Figure 7.21: Confusion matrix for a fully connected network trained on triples, double to triples,
and false data from a 150MeV train for approximately 18k epochs and tested on the MCDE model
test1 150MeV 100k beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 74.5 5.0 2.2 2.2 2.9 1.7 6.7 0.5 0.0 0.0 2.9 1.4 0.0
132 2.2 77.4 1.9 1.2 2.2 1.9 0.0 0.0 6.2 0.5 1.0 4.6 1.0
213 0.7 2.2 77.6 3.1 1.2 1.7 0.5 8.7 3.1 1.0 0.2 0.0 0.0
231 2.4 1.9 3.9 76.6 3.9 1.7 0.2 0.5 0.5 2.4 5.1 0.7 0.2
312 2.7 1.7 1.0 1.9 80.2 2.9 2.7 1.0 0.2 5.1 0.2 0.0 0.5
321 1.4 2.2 3.6 1.7 3.1 79.0 1.4 3.4 0.0 0.0 0.5 3.6 0.0
124 3.8 0.3 0.3 0.2 2.3 1.9 76.4 6.9 0.6 0.4 0.4 1.0 5.5
214 0.8 0.1 3.6 0.4 1.5 3.2 6.6 76.9 0.3 0.9 0.2 0.5 5.1
134 0.2 4.8 2.7 1.4 0.9 0.1 0.5 0.4 75.9 7.5 1.3 0.6 3.7
314 0.1 0.1 1.0 3.2 6.0 0.4 0.3 1.0 7.1 74.4 0.4 0.6 5.5
234 3.3 1.1 0.3 4.2 0.3 0.9 0.2 0.5 0.7 0.4 75.6 6.9 5.6
324 1.7 2.9 0.1 0.5 0.3 5.4 1.5 0.2 0.3 0.2 7.4 73.1 6.4
444 0.3 0.7 0.3 0.6 0.4 0.3 4.6 3.9 4.1 4.5 5.1 4.3 70.8

Figure 7.22: Confusion matrix for a fully connected network trained on triples, double to triples,
and false data from a 150MeV train for approximately 18k epochs and tested on the MCDE model
test1 150MeV 180k beam.

of input which was assigned to class at the top of column. Each cell is colored by accuracy relative
to the largest percentage present in entire confusion matrix.

The conclusions made about Figure 7.20 also hold in their entirety for the triples, DtoT, and
false data in Figure 7.22 with exceptions to the exact percentages mentioned.

In Figure 7.23 we clean the data using our neural network and then reconstruct the (a) un-
cleaned, (b) cleaned, and (c) real dose. The cleaned image has a clear beam shape and a clear
stopping point which is similar to the dose image. The uncleaned image is extremely noisy and
we cannot make any conclusions about the beams shape or depth. More detailed discussions, con-
clusions, and results about the application, usage, and impact of the neural network on real-world
testing and physics is detailed in [23].

We also have four additional MCDE testing tests at each of the previously used dose rates.
All of the conclusions made about Figures 7.17, 7.18, and 7.19 all hold for the unlisted results
mentioned. There are differences in the exact percentages but the general relationships discussed
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(a) Uncleaned (b) Cleaned (c) Dose

Figure 7.23: Comparison of reconstructed prompt gamma rays with (a) uncleaned triples data and
(b) cleaned triples data to the (c) dose delivered by the proton beam.

are identical.

8 Conclusions

In Section 7.1 we highlighted that there were quite a few issues with our previous data set used in [5].
The first issue is that, perhaps due to a configuration bug in the data generator, we cannot create
similar data sets. This is demonstrated by examining the distributions in Figure 7.1 . Additionally
we see that any attempt to validate, train, or test on newly generated data sets results in a failure to
learn which is seen in the training plots in Figure 7.3. Figure 7.4 shows that the doubles-to-triples
and the false data are the reason for a drop in accuracy when classifying the latest data. The
doubles-to-triples and false events for the old data came from manually stitching singles to doubles
and other singles together respectively. The doubles-to-triples and false events for the latest data
were generated by the simulation software only. It seems that the old method of attaching singles
to other events does not mimic the idea of Compton camera bad detection. A more full breakdown
of doubles-to-triples and false events could be done to see why this is the case but it is beyond the
scope of this work.

We did several hyperparameter studies on different sets of doubles data to determine the optimal
size for the residual blocks, number of layers, dropout rate, learning rate schedule, neurons per layer,
and batch sizes in Section 7.2. The results and the conclusions of these studies were used in [18].
We determined many optimal hyperparameters for the doubles classification network and used this
optimal set to produce Figure 7.8 which displays three confusion matrices, one for each of the
different dose rates. For each of the confusion matrices, the dominant classification for each input
class is the class itself. This indicates that the model is able to correctly classify most samples.
The matrix values between the dose rates do not appear to change by more than 1%, where higher
dose rates have slightly higher accuracies. We see that the neural network classifies false events
with around a 4% higher accuracy for all three dose rates compared to the true doubles events.
We cleaned the data with best performing neural network and then did reconstructions, seen in
Figure 7.9, of the (a) uncleaned data, (b) cleaned, and (c) original dose. Ultimately, we want the
reconstruction images to resemble the original dose as shown in Figure 7.9(c). When comparing
the Figure 7.9(a) and (b), we see that the cleaned data has removed a significant portion of the
noise as seen in uncleaned reconstruction. When we look at the difference between Figure 7.9(b)
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and Figure 7.9(c) there still is visual noise in the cleaned data that can be removed.
In Section 7.3 we train several random forests using sklearn and pick the best performing

random forest to generate the confusion matrix seen in Figure 7.10. The best random forests
hyperparameters can be seen in Table 7.2 We see that the dominant classification for each row is
the input class itself. For the 123 class we see that the second and third highest classifications result
in around 30% of the data and the remaining 10% is spread among the remaining classes. The that
the 2nd and 3rd highest classifications soak around 30% of the data is consistent for each input
class but there is no pattern between the how any input class may related to the dominant incorrect
classes. The 123 class’ top classifications are 123, 213, 132 and the 312 class’ top classifications are
312, 321, 132. Why is the 2nd highest classification of 123 213 and the 3rd highest classification 132?
Why is the 2nd highest classification of 312 321 and the 3rd highest classification 132? There is no
answer which currently can consistently explain what the input class, say 123, has in connection to
a dominant misclassification like 213. The random forest performed considerably worse than the
neural network in Section 7.4.1. The maximum classification percentage of the random forest on
the test1 20kMU beam was 63.7% and the worst was 53.3% for the dominant classification. The
maximum classification percentage of the neural network on the test1 20kMU beam was 87.6% and
the worst was 85.8% for the dominant classification. The random forest performed around 30%
worse than the neural network. The random forest model when saved to disk using the joblib

library with compression level 3 was 11 gigabytes. The neural network when saved using Keras’
Model.save method uses 203 megabytes disk space. The neural network outperforms the random
forest in classification while using considerably less disk space. Both methods are fast enough to
be used for data processing. We need a minimum of 80% classification accuracy for each class with
a preferred accuracy greater than 95% for real world usage.

In Section 7.4 we decided that, based on the results in Section 7.1, we wanted to slowly expand
our network’s classification coverage. First starting with only true triples, then adding in doubles-
to-triples, finishing with the inclusion of false triples. This allows us to gauge how the increase in
data complexity is impacting the network’s ability to learn. The results of our expansion is best
highlighted in Figure 7.13 for triples, Figure 7.17 for triples/doubles-to-triples, and Figure 7.20 for
triples/doubles-to-triples/false. In the most complex set, the triples/doubles-to-triples/false results,
we see that the dominant classification for each row is the input class itself. The second highest
classification percent for most classes of triple is the double-to-triple version of itself. This means
that the network correctly identifies the first two interactions the best and, at times, struggles to
correctly identify whether the third interaction truly belongs in the triplet. If we want to make
light of this idea we can say that this percentage of classification still produces a valid true double
which does have some use during reconstruction. Even more interesting is that the third highest
classification yields another valid double! This tells us that the network is also likely to throw
away the first interaction and keep the remaining two interactions and correctly order them. The
true triples are very rarely mistaken as false data. Take the 213 input class. The top 3 dominant
classifications are 213 at 77.7%, 214 at 6.4%, and 134 at 3.3%. Given a collection of 213 events
which are 100% unusable. We get 78% back as perfectly ordered triples and 9% as perfectly ordered
doubles. The remaining 13% pollute our data. This is a large amount of data recovered. The
other classes of triple, like 123, where the third highest classification is another triple which only
contributes more noise. For the DtoT we see that the second highest classification for each DtoT
event is actually a reverse ordering. The neural network can determine which of the three interaction
does not belong to the pair but, after doing so, is unsure of the ordering given the remaining two.
In hopes of alleviating the DtoT event being cast as misordered doubles it may be useful to pass
classified doubles-to-triples to the doubles classification network but it is also likely this idea only
compounds the errors. The third highest classification for some inputs is a triple where the two

37



true interactions are correctly ordered but the third interaction, a improperly coupled single, stays
attached. This makes the DtoT appear as a valid triple and creates noise during reconstruction.
Other DtoT have false events as their third highest classification. If a DtoT is classified as a false
event and is thrown away then this is still more optimal than having it incorrectly used as a true
triple. In the context of reconstruction no data is better than bad data. Regardless we recognize
that a DtoT without adjustments is unusable for reconstruction and, as such, any improvement is
welcomed. The false data classification is a more interesting story. Any improper classification of
false data means that we are guaranteed to see noise occur in our reconstruction. The dominant
classification of false events is false events which yields a very positive outcome. The majority
of the incorrect classifications of the false data fall directly into the DtoT classes. Very few false
events false into the true triple categories. A false triple being classified as a DtoT means that we
now have a false double being passed through the system. There is no reason to believe that a false
triple with an interaction removed will be fundamentally different than a naturally occurring false
double. If we were to then pass that false double to the double classification network it has an 80%
chance of being removed entirely. This means that of the roughly 26% of false events classified as
DtoT events, assuming an 80% removal rate via the double classification network, only around 5%
will make it through to the final reconstruction process. Of course it would be most optimal if the
triple classification network did not need additional assistance but, in general, these results are not
nearly as bad they seem on the surface when you follow this train of thought. Of course additional
experimentation and testing will be needed in order to fully verify these ideas. In Figure 7.23 we
clean the data using our neural network and then reconstruct the (a) uncleaned, (b) cleaned, and
(c) real dose. The cleaned image has a clear beam shape and a clear stopping point which is similar
to the dose image. The uncleaned image is extremely noisy and we cannot make any conclusions
about the beams shape or depth. We also have four additional MCDE testing tests at each of the
previously used dose rates. All of the conclusions made about Figures 7.17, 7.18, and 7.19 all hold
for the unlisted results mentioned. There are differences in the exact percentages but the general
relationships discussed are identical. More detailed discussions, conclusions, and results about the
application, usage, and impact of the neural network on real-world testing and physics is detailed
in [23].
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II Compton camera enhanced by a neural network for event selection. Sci. Rep., 11(1):9325,
2021.

40



[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.,
12:2825–2830, 2011.

[23] Jerimy C. Polf, Carlos A. Barajas, Gerson C. Kroiz, Stephen W. Peterson, Paul Maggi, Den-
nis S. Mackin, Sam Beddar, and Matthias K. Gobbert. A study of the clinical viability of a
prototype Compton camera for prompt gamma imaging based proton beam range verification.
In AAPM Virtual 63rd Annual Meeting, submitted (2021).

[24] Jerimy C. Polf, Paul Maggi, Rajesh Panthi, Stephen Peterson, Dennis Mackin, and Sam Bed-
dar. The effects of Compton camera data acquisition and readout timing on PG imaging for
proton range verification. IEEE Trans. Radiat. Plasma Med. Sci., pages 1–1, 2021.

[25] Jerimy C. Polf and Katia Parodi. Imaging particle beams for cancer treatment. Phys. Today,
68(10):28–33, 2015.

[26] H Rohling, M Priegnitz, S Schoene, A Schumann, W Enghardt, F Hueso-González, G Pausch,
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