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Abstract. The study of clouds, i.e., where they occur and what are their
characteristics, plays a key role in the understanding of climate change.
Clustering is a common machine learning technique used in atmospheric
science to classify cloud types. Many parallelism techniques e.g., MPI,
OpenMP and Spark, could achieve efficient and scalable clustering of
large-scale satellite observation data. In order to understand their differ-
ences, this paper studies and compares three different approaches on par-
allel clustering of satellite observation data. Benchmarking experiments
with k-means clustering are conducted with three parallelism techniques,
namely OpenMP, OpenMP+MPI, and Spark, on a HPC cluster using
up to 16 nodes.

Keywords: Parallel computing · High performance computing · MPI ·
OpenMP · Spark · K-means Clustering

1 Introduction

The climate of Earth tends to maintain a balance between the energy reaching
the Earth from the Sun and the energy leaving the Earth to space. This is
also known as Earth’s “radiation budget”. The components of the Earth system
contributing to the radiation budget include Earth’s surface, atmosphere, and
clouds [10,18]. The study of clouds, including their frequency of occurrence,
location, and characteristics plays a key role in the understanding of climate
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change. Thick clouds in the lower atmosphere primarily reflect the incoming
solar radiation and consequently cool the surface of the Earth. However thin
clouds in upper atmosphere easily transmit the incoming solar radiation and
also trap some of the outgoing infrared radiation emitted by the Earth’s surface
and radiate it back downward. This process consequently warms the atmosphere
and surface of the Earth. Usually, the clouds in the upper atmosphere have a
colder cloud top that traps the energy in form of outgoing longwave emission.
As a result of the trapped energy, the temperature of the Earth’s atmosphere
and surface increases until the longwave emission to space is balanced by the
incoming solar shortwave radiation.

Two parameters that are directly related to the heating and cooling effects
of clouds are cloud optical thickness (COT) and cloud top height (CTH) which
is related to cloud top pressure (CTP). COT is a measure of the thickness of
cloud which largely determines the reflection of sunlight, i.e., the cooling effects
of clouds. The thicker the cloud the stronger the reflection. The CTP also plays a
role in the warming of clouds in the thermal infrared region (greenhouse effect).
For example a cloud with high CTP and low COT would result in warming affect
but a cloud with a high CTP and high COT would result in a net 0 or “neutral”
effect. For this reason, the satellite retrievals of the cloud COT and CTP are
often portrayed in a joint histogram of COT and CTP.

We can study these variables using NASA satellite data such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO). The clouds can be stud-
ied through atmospheric modelling, where computer simulations are used in
conjunction with field measurements and lab studies to further our understand-
ing of cloud physics. In this work, we use MODIS data for five years (2005–2009)
and employ k-means clustering to identify the prominent cloud types.

K-means clustering is a widely applied unsupervised machine learning algo-
rithm. When the input data is large, the speed of k-means clustering should
be considered. In our study, we apply three different implementations of paral-
lelized computation of k-means clustering: OpenMP, OpenMP+MPI, and Spark.
The contributions of this paper are: (1) implementations of three different par-
allelization techniques on k-means clustering (2) using performance comparisons
of these three different parallelized techniques.

2 Background

2.1 Cloud Joint Histograms

COT and CTP are recorded by a satellite from the snapshot of a cloud which
we visualize with the 2-D joint histogram [13]. The International Satellite Cloud
Climatology Project (ISCCP) cloud type is used in order to interpret the his-
togram [17]. With this categorization, it is easy to link the joint histogram data
to real world clouds as shown in Fig. 1.

It is natural that multiple cloud types occur in the same 1◦ × 1◦ grid cell.
Consequently individual joint histogram data (representing one time and one
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Fig. 1. Left: Cloud type definitions can be extrapolated using joint histograms where
the joint-histogram is broken up into regions which are blocked according to cloud-
type. Additional information on this technique can be seen in [17]. Right: The joint
histogram of cloud top pressure and cloud top thickness suggesting high frequency of
stratocumulus clouds.

location) has great variability. This is the reason why the concept of “cloud
regime” was created. In short, the cloud regime is the concept representing the
domain mixtures of cloud types.

2.2 K-means Clustering

In order to cluster the cloud types based on their properties (COT, CTP) as
shown in Fig. 2, we used k-means clustering. The general idea behind K-means
clustering is grouping data according to distance where distance is a measure of
similarity [9].

K-means is an unsupervised clustering algorithm. It starts with choosing k
cluster centers (centroids) in the space representing the data objects. Next each
data object is assigned to a cluster center with the closest Euclidean distance.
After assigning all data to some centroid a new position for the k centroids are
calculated. If the centroids move such that they have a smaller mean distance
the new clusters are kept and the old centroids are discarded. Then the previous
steps of assigning and calculating are repeated until the centroids’ movement is
negligible [14,15].

The k-means algorithm is sensitive to the initialization of randomly selected
cluster centers [9]. To reduce the randomness in the cluster results, it is better to
initialize the centroids as sparse as possible. To get stable clustering results, the
algorithm can be made to run multiple times, and the within-cluster-variance
and Euclidean distance can be used as clustering criteria.

3 Implementation Details

We have three different approaches to k-means clustering in this section. Two
were our own implementations and one was provided by Dr. Jin as a baseline to
be improved and compared against. Our source code can be found on GitHub [6].
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Fig. 2. The cloud regime (CR) centroids of daily ISCCP joint histograms. The cloud
fraction (CF) of each regime, the sum of 42 bin values, is also provided. When bin
values are larger than 10%, they are explicitly colored [13]. (Color figure online)

3.1 OpenMP Based Implementation

Our initial baseline for improvement was code provided to us by Dr. Jin which
uses Python for pre-processing and post-processing of data while leveraging
OpenMP enabled FORTRAN for computationally heavy tasks such as the k-
means clustering algorithm. The bindings were generated using f2py. We refer
to this approach as the OpenMP approach.

The code takes in a binary data file that is a n × 42 multi-dimensional array
where the n dimension is the total number of histograms to be used for the k-
means algorithm whereas 42 is the number of cloud fraction bins within each his-
togram. Concisely each row is one joint histogram. The binary data is produced
using level 3 MODIS data that is provided in the HDF format. The binary format
is more compact on disk and is loaded directly into an array using NumPy. Note
that each joint histogram(s) is a data point in the k-means clustering algorithm
and will be referred frequently as “record” or “records”.

As is typical of OpenMP code the number of threads is set a priori with
the environment variable OMP NUM THREADS. First Python calculates the k = 10
initial centroids for k-means clustering using the same idea as the k-means++
initialization algorithm. This attempts to make the initial centroids sparse so
that they can each encompass the largest amount of data with minimal, if any,
overlap. The first iteration uses the initial centroids as a 0th iteration. All data
and the previous iteration’s centroids are then passed to the first FORTRAN
subroutine, assign and get new sum, which determines a new centroid and com-
putes the Euclidean distance of each record from the new centroids. The newly
generated centroids and respective distances are returned to Python from FOR-
TRAN as two NumPy arrays. To prevent performance loss that comes with using
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Python, NumPy’s array vectorization is used to compute the mean distances. A
vectorized check is implemented with NumPy to determine if the mean distances
of the new centroids are superior to the previous iteration’s centroids. The cen-
troid set with the best mean distances is kept for the next iteration. This process
continues until either the maximum number of iterations is reached, 40, or the
mean distance between the previous iteration’s centroids and the newly com-
puted centroids is smaller than the given threshold of 0.125 which was provided
by Dr. Jin. Once a stopping criterion has been met the final centroids are writ-
ten to disk in a binary format so that may be post-processed at a later time. A
Python script then reads in these binary centroids to produce the several joint
histograms seen in Fig. 2.

3.2 OpenMP and MPI Based Implementation

Our first approach uses Cython, Python, OpenMP, and MPI. The total number
of records rt are split as evenly as possible between the p MPI processes such that
no process has more than one record compared to any other process. Whereas
OpenMP is used in hot computational C loops for increased parallelism. We
refer to this approach as OpenMP+MPI.

The load balancing scheme for MPI and OpenMP is discussed on a per node
basis as follows. The environment variable OMP NUM THREADS is set a priori to run
time. The Intel OpenMP environment variable KMP AFFINITY is set to scatter
so that threads are distributed as evenly as possible among the cores. Given our
HPC testbed the cores per node c = 16 in conjunction with some number of
processes per node pn the number of threads per MPI process is computed by
tp = c/pn. This balancing system allows for all node resources to be used, even
if pn < c.

Before any k-means calculations begin, each MPI process determines its own
process rank and the total number of processes running. The processes use the
total number of records and total number of processes to determine their local
number of records rl as rl = rt/p. In the event that the total number of records
cannot be evenly distributed, the remaining records will be distributed such
that no processes have more than one record compared to any other process.
Then each process reads in its respective records from the same binary data
as mentioned in Sect. 3.1. This means that each process knows only of its own
records and no data is duplicated across the processes.

First the initial centroids are calculated as mentioned in Sect. 3.1. All data
and the previous iteration’s centroids are passed to the Cython def function
assign and get new sum, which calls the cdef functions calculate cl and
calculate outsum. The deterministic behavior of k-means promises that the
new cluster produced by calculate cl is the same on every process. The
Euclidean distance computation is where the parallelism plays a role. Figure 3
represents just one of the k many centroids where p = 2. Process 0 and Process
1 compute the Euclidean distance from their respective records to the centroid
independently of each other. Then the mean distance for all records to the cen-
troid would be computed using a MPI Allreduce followed by a local division
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Fig. 3. The general idea for parallelization over a large data set with the repeated
calculation. Each black dot is a record and the colored lines tell which process would
be handling that Euclidean distance from the current center of the cluster. (Color figure
online)

by rt. OpenMP is implemented with a pragma omp parallel for around the
record distance calculation loop. Thus the most expensive computation of the k-
means algorithm is sped up by splitting rt into rl with MPI and multi-threading
the record distance calculation with OpenMP.

In the code these distances and clusters are returned from Cython to Python
as two NumPy arrays. In actuality the processes collectively compute a global
mean distance for each cluster using a MPI.allreduce in Python. While the MPI
command could have taken place inside the Cython code the idea is to keep the
same data transaction style as the FORTRAN code. The MPI call happens
in Python rather than Cython. All processes have the same newly calculated
centroids, previous iteration’s centroids, and respective mean distances to the
centroids. So all processes make the same choice on which set of centroids have
the better mean distances and discard the other. The stopping criterion and
post-processing is the same as in Sect. 3.1.

3.3 Spark Based Implementation

Our second approach is implemented in Python using Apache Spark’s scalable
machine learning library Spark MLib and the associated API. We utilized Spark
2.3.0 and the built-in k-means algorithm for the cloud regime [1,2]. There are
four steps in our applied Spark machine learning workflow: load our data, extract
the features, train the model, and evaluate the results.

First we load our data into a Spark DataFrame which is organized as a
distributed collection of data by name columns [4]. Upon the creation of the
DataFrame it is apparent that our data contained 42 columns which are the
bins of the joint histogram. We extracted the 42 features and assembled a fea-
tures vector in preparation for the clustering. In the clustering process, we set
k = 10. We changed set the Spark variable max.iteration to 40 to make sure
that a sufficient number of iterations occurred before the algorithm stopped [3].
We also tried to set larger iteration limits such as 2000, but the run time and
clustering result remained similar. So we concluded that 40 iterations are enough
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in our case. We executed the program many times and output the silhouette with
squared Euclidean distance to make sure that our result was relatively stable [14].
The results of the clustering are dumped in a binary format and post-processed
using the same Python script in Sect. 3.1.

4 Results

In this section three different aspects of the results are highlighted. Code validity
is for testing whether parallelism is implemented correctly. Computation may
proceed successfully but the application results could be incorrect. To check the
validity of our two implementations we compare our results against the results
that are produced by the provided implementation. Performance contains wall
clock times with various environment conditions as cataloged in their respective
sections for each of the code implementations. Cross-comparison compares all
implementations to one another in both qualitative and quantitative measures.

The experiments are conducted on the UMBC High Performance Computing
Facility (HPCF) hpcf.umbc.edu. Each node used in our experiments has two
eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory. These
nodes are connected by a high-speed quad-data rate (QDR) InfiniBand network.

4.1 Code Validity

When parallelism is involved, we commonly assume that there has to be some
numerical drawback. For example, if parallelism is implemented incorrectly,
rounding errors can occur, images can degrade in quality, and values that serial
code correctly computes are now no longer within an acceptable margin of error.
Any code which produces incorrect results in order to improve performance can-
not be accepted as correct code. Each of the implementations were run using the
same initial parameters in order to mimic the run environment of the OpenMP
approach. Additionally all the of the implementations were post-processed using
the same Python script so that the images are comparable qualitatively and
quantitatively.

First consider Fig. 4. The OpenMP and OpenMP+MPI joint histograms
are identical in their order, shape, and colorings. Since the algorithms in the
OpenMP approach were recoded line by line in the OpenMP+MPI approach
using Cython, it makes sense that the results should be identical. The only fun-
damental difference between the two coding schema was the major ordering of
the data and record splitting via MPI. More importantly, the OpenMP approach
and the OpenMP+MPI both used the same Python functions to calculate the
initial centroids. The underlying numerical differences between each of the results
is inevitable as there is no promise that the FORTRAN compiler and the C com-
piler will make the same sort of optimizations. Thus the FLOP round off error
is most certainly different between each of the three implementations. However
the accuracy of COT and CTP need only be accurate within 10−3 for the results
to be consider good enough in the scope of the problem. The post-processing
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Fig. 4. Post-processed joint histogram results of the k-means final stable clusters for
all three implementations. The images are qualitatively identical

script only uses decimals on the order of 10−2. Beyond the quantitative results
produced, the qualitative results are seen as the more important use of the joint
histogram model as discussed in [13]. This means that the scale, color, shape,
and ordering of the histograms play an integral role in determining the accuracy
of the implementation compared to the original.

While the implementations are fundamentally different the underlying algo-
rithm is still the k-means clustering algorithm with sparse initialization of the
first set of centroids. Even though the Spark code uses open-source libraries
rather than personally coded algorithms the qualitative results are identical to
the OpenMP approach which was programmed from scratch. The numerical val-
ues between each of the post-processed results are functionally identical and as
stated qualitatively identical as well.

The major difference is the approach of parallelism. Spark’s parallelism uses
a completely different methodology than the typical operation of one compute
node with OpenMP enabled code. Additionally Spark’s data handling is vastly
different than the OpenMP+MPI code, yet the results are the same. These differ-
ences are irrelevant because the application results computed by all approaches
are the within acceptable margins. Therefore both of the alternative implemen-
tations can be regarded as accurate parallelized representations of the OpenMP
approach, as they show no signs of result degradation.

4.2 Performance

OpenMP. Table 1 presents the recorded times for varying number of OpenMP
threads in the OpenMP approach. Clearly as we use more threads the time
improves slightly but there appears to be bottleneck. Even though we’re using
16 threads (see the final column) the time is not 16 times faster. We can use
the best speed possible from these results as a baseline to compare other results
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to. There is a clear improvement in the timings as we increase the number of
threads used. This indicated that the OpenMP parallelism is having a positive
on the performance. However as the number of threads double the timing is not
halved. This then implies that the implementation has a bottleneck beyond the
OpenMP components. Thus the 1-node, 1-process-per-node, 16-thread timing in
Table 1 shall be the timing that all other timings are compared too.

Table 1. OpenMP wall clock results with total number of threads used in HH:MM:SS.

Threads 1 2 4 8 16

Wall clock 00:14:59 00:07:10 00:03:47 00:02:58 00:02:38

Table 2. OpenMP+MPI wall clock results with Nodes and Processes Per Node in
HH:MM:SS.

Nodes 1 2 4 8

1 ppn 00:01:01 00:00:34 00:00:17 00:00:08

2 ppn 00:01:23 00:00:41 00:00:20 00:00:11

4 ppn 00:01:50 00:00:54 00:00:28 00:00:16

8 ppn 00:02:42 00:01:22 00:00:45 00:00:29

16 ppn 00:04:47 00:02:32 00:01:29 00:01:07

OpenMP+MPI. The MPI results in Table 2 show that as the number of pro-
cesses per node increase the performance decreases. Consider the 8 node column
of the table. As the number of processes per node increase the times gradually
worsen at an increasing rate until the timing from eight processes per node to
sixteen processes per node doubles. This same behavior is consistent for all node
columns. Thus we can say that there is an optimal load balancing issue that must
be addressed. The most optimal way to take advantage of all cores on a node in
this case is to use the minimal amount of MPI processes and maximum number
of threads per process. This cuts down on the communication required between
processes and allows for a collection of nodes to be used mainly for threads.
These threads are lightweight and require no intercommunication of data to
function. For all rows as the number of nodes used increases the performance
also increases which is the expected strong scalability outcome.

The data set fits comfortably within the total memory capacity available.
Meaning that there is less memory contention and one process per node performs
more optimally than expected. On dual socket nodes the minimal number of
processes required for optimal performance of memory bound code has been
concluded to be two processes per node. This allows one process and its respective
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threads to be placed on their own processor [5,16]. Once larger data sets approach
the node memory limit of ≈62GB MPI should start to demonstrate a clear
performance improvement as the communication time becomes a small player in
the overall timing results.

Spark. Table 3 is the run time table of our Spark implementation. In Table 3
by increasing nodes from 1 to 4 our spark program wallclock time decreases
significantly from 9 min to less than 3 min. However when scaling up from 4
nodes to 8 nodes, the timings do not change significantly, despite the continued
decrease from just under 3 min to around 2 min. The reason is that during most
of the run time Spark is working on loading data into the Spark DataFrame.
The actual calculating time of the centroids in Spark with 4 nodes is around 7 s,
and with 8 nodes, it is only 4 s. We conclude that performance did not improve
much by increasing the number of nodes. This is because the size the data set
(3 GB) is not big enough to make a significant difference and there’s an overhead
when loading the data into the DataFrame.

Table 3. Spark wall clock results with total number of nodes used in HH:MM:SS.

Nodes 1 2 4 8

Wall clock 00:09:03 00:06:16 00:02:51 00:02:09

4.3 Cross Comparison

Implementation Comparisons. The first step in implementing MPI was to
convert the FORTRAN code into C code to maintain high performance and ease
the MPI parallelization. MPI is better equipped to handle C’s native ordering
(row major). In contrast CPython API is rather terse and unwieldy. Thus when
trying to implement a simple interface a great deal of boilerplate code has to
be written. The use of Cython removes a large amount of the API complexities
because Cython will automatically generate the CPython API compatible C code
from the Cython code and properly optimize for C-like performance. Fortunately
the Cython handler is an executable that comes bundled with a modern NumPy
distribution at or beyond 1.14+. The Cython handler converts the Cython code
into C using the CPython API. The generated C code is compiled to a dynam-
ically linked library which can be imported directly into Python. This process
is similar to how f2py works for the original FORTRAN implementation. One
benefit is that Cython allows any C function to be used inside the Cython code.
The major benefit is that Cython also allows for C speed memory accesses via
Memoryviews. A Memoryview provides a closer interface to the heap than NumPy
arrays. This allows the block of memory controlled by the NumPy array to be
changed as if it were created using malloc. With all these tools in place the
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FORTRAN code was converted line by line into Cython code and all original
NumPy arrays were converted into row-major format so that they are compat-
ible with the C-style arrays that MPI prefers. Importantly Cython allows for
easy integration of OpenMP into the cdef functions, which means that portions
of the code needed to be refactored into cdef and def portions [7].

Lastly mpi4py is used to integrate MPI into the Python portion. Since
Cython handles the computation efficiently, MPI was only tasked with chop-
ping the data into smaller portions and sharing minor amounts of data. An
MPI.allreduce is used for reducing integers and simple datatypes. Whereas we
used MPI.Allreduce for reducing NumPy arrays efficiently.

The Spark code is so fundamentally different from the other two implemen-
tations, a comparison would just be reiterating the implementation described in
Sect. 3.3.

Wall Timings. All but the bottom left three timings in Table 2 are better than
the best timing in Table 1. Consider the best timing from the OpenMP approach.
This OpenMP timing is 2× as fast as the slowest single node performance time
for the MPI enabled code. However this timing takes twice as long as the fastest
single node performance time. The 1 node 1 process per node timings in Table 2
use the same amount of resources as the best timing in Table 1. This indicates
that the benefits of Cython, rather than MPI, are to thank for the jump in
performance. By enabling MPI and using 8 nodes we get a mere 8 s run time.
This is 18× faster than the OpenMP performance time and approximately 7.5×
faster than the single node OpenMP+MPI code.

Consider the timings in Table 3 compared to the timings in Table 1. Observe
the single node performance of Spark in this case the OpenMP approach is 3.4×
faster than the Spark approach. It is not until Spark uses 8 full nodes before it
is able to compete with the single node performance of OpenMP. Even then it
is only 1.2× faster.

The main reason for the under performance of Spark is that the data set
is very small and the communication time and initial overhead of Spark far
outweigh the actual computation needed to solve the problem. Similarly as we
increase the number of MPI processes it is clear that the communication time is a
large price to pay despite very minimal amounts of communication. The problem
size is small enough that communication still plays a big role in performance
timings and OpenMP+MPI has the least amount of overheard when using only
one process per node is used which is why this row of timings dwarf all other
results.

5 Related Work

The reasons for running benchmarks vary considerably. One may wish to test
the capability of new hardware as seen in [5]. The idea of transcoding a prob-
lem into multiple languages and use different underbelly computation code is
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commonplace in the sphere of development. Even on the exact hardware we uti-
lized for our implementations, there have been several transcoding performance
studies. For example: the performance of numerical solvers in Julia, R, and Mat-
lab which is found in [16]. In [12], k-means clustering is used as a comparison
of other machine learning techniques on Hadoop using their benchmarking suite
HiBench. OpenMP applications and k-means clustering are tested in [8]. Another
benchmarking work on parallel computing among different parallel programming
approaches includes Hadoop, Spark, and Hive database. This proved that differ-
ent programming methods could cause more than 100 times difference in running
speed [11]. However there are no specific combinations that reflect our language
choice and application problem.

6 Conclusions

Both parallel implementations managed to correctly compute the same clusters
as the original code. Only OpenMP+MPI implementation managed to outper-
form the original code with the same amount of resources at its disposal. Only
OpenMP+MPI managed to outperform the original implementation when using
more resources than the original code was capable of using.

However, the demonstration of increased performance of both parallel imple-
mentations was severely limited by the lack of data. Spark is designed to handle
data on the TB scale, yet we only used 3 GB. These results are not indicative of
what would happen given 20+ GB of data. In our Spark application, we basi-
cally use only its default level of parallelism. By configuring higher parallel level
to load data, or upload data to HDFS might improve the speed of our Spark
program. Moreover, Spark application utilizes Python, and the programming in
Python itself is slower than programming in FORTRAN and C. So we cannot
conclude that Spark is an inferior implementation in this current stage. We only
can conclude that it might need more tuning work to make it optimized and
competitive.

When MPI scaled is scaled to multiple nodes always the performance always
proved. One point is that when MPI is run with multiple nodes using one process
per node the total number of threads increase proportionally. However when
the number of processes increased beyond one process per node, performance
decreased indicating that the data set is also too small for MPI communication.
Ordinarily this would be a smaller price to pay for increased parallelism but was
not in our case.

In the future we would like to test these parallel implementations with much
larger data sets. We propose that both Spark and MPI will have significant
increases in performance beyond the original code once scaled up to 20+ GB.
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