
Parallel studies for chemically reacting systems

Yushu Yang ∗

August 6, 2009

Abstract. Parallel computing code can be applied to solve chemically reacting systems.
In a well stirred chemical system, the number of molecules for each species can be solved by
implicit tau method, and the histogram of the method is used to compare with the exact
simulation called SSA. In this report, the parallel code will be implemented in both SSA and
implicit tau, with the discussion that how random number generator will be applied in the
parallel code from large number of sample simulations. Moreover, the performance study of
the parallelism and some statistical analysis will be provided.

1 Introduction

The general problem to be solved here is the exact approximation and numerical solution
of the stochastic chemical system by stochastic simulation algorithm (SSA) and implicit
tau method. Since both SSA and implicit tau involve with generating random variables,
the result will be analyzed through generating large samples of simulations. In parallel
computing, this can be achieved by distributing all the simulations into different processes
and then collect the data into one process.

In this report, section 2 describes the background of the chemical reaction systems and
random number generator. Section 3 discusses how the parallel implementation applies to
the chemical systems. Section 4 uses the time performance, numerical results and plots to
illustrate the advantages of parallel code to solve some numerical problems by using random
numbers or variables.

2 The stochastic reaction system background

2.1 Stochastic chemical reaction systems and SSA

Stochastic chemical reaction systems involved with small number of molecules have a dy-
namic behavior that is discrete and stochastic. However, for large number molecules of

∗Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop
Circle, Baltimore, MD 21250. yushu1@umbc.edu

1



species, the number of species can be modeled by some deterministic differential equation.
The following part will introduce the stochastic and deterministic behaviors of the chemically
reacting systems [1].

The standard well-stirred chemical model is that there are well-stirred mixture of N
molecular species {S1, . . . , SN} interacting throughM chemical reaction channels {R1, . . . , RM}.
Note that the state space of the system is denoted by (X1(t), . . . , XN(t)), where Xi(t) is the
number of molecules Si at time t. For each j = 1, . . . ,M , aj(x)τ + o(τ) is the probability,
given X(t) = x, that reaction Rj will occur in (t, t+τ ], where aj(x) is the propensity function.
Vector νj, j = 1, . . . ,M is the stoichiometric vector, whose ith component νji is the change
in the number of Si molecules produced by one Rj reaction.

X(t) can be simulated exactly by the stochastic simulation algorithm (SSA) [2]. SSA is
based on the next-reaction density function p(τ, j|x, t) which is defined as the probability,
given X(t) = x, that the next reaction in the system will occur in the infinitesimal time
interval (t+ τ, t+ τ + dt] and will be a Rj reaction. It follows that

p(τ, j|x, t) = aj(x)exp[−a0(x)τ ] (τ ≥ 0; j = 1, . . . ,M), (2.1)

where a0(x) =
∑M

j=1 aj(x). The SSA generates τ and j according to (2.1) and then advances
the system according to

X(t+ τ) = X(t) + νj.

2.2 Implicit tau method

If the number of molecules is very large, the randomness in the trajectory of X(t) is not
noticeable. In this case, the trajectory takes on the character of continues and deterministic
process and can be described by the following reaction rate equation (RRE) [3].

˙̄X(t) =
M∑

j=1

νj aj(X̄(t)), (2.2)

with initial condition X̄(0) = x0.
Since SSA simulates one reaction each time, it is very computationally expensive. The

tau-leaping methods [4, 5] are proposed to accelerate the chemical reaction simulation. They
proceed as follows. First a time step τ is chosen. Define Rj(x, τ) to be the number of times,
givenX(t) = x, that jth reaction channel will fire in the time interval (t, t+τ ], (j = 1, . . . ,M).
Then

X(t+ τ) = x+
M∑

j=1

νjRj(x, τ). (2.3)

In general, the distribution of Rj(x, τ) is not known. In a tau leap method, an approx-
imation to Rj(x, τ) is computed. The formula of the implicit tau method, inspired by the
implicit Euler method, is given by

2



X(it)(t+ τ) = x+
M∑

j=1

νj{Pj(aj(x)τ)− aj(x)τ + aj(X
(it)(t+ τ))τ}. (2.4)

The method approximates Rj(x, τ) by Pj(aj(x)τ), where Pj = Pj(aj(x)τ) are statistically
independent Poisson random variables.

Newton’s method is applied to solve (2.4). Note that X(it)(t+ τ) is not an integer vector
any more. For the final record, we should round the values to the nearest integer.

2.3 Random Number Generator

A simulation of any system with random components requires a method for generating
numbers that are random. A random number is a random variable which is uniformly
distributed over [0,1]. Random variables from all other distributions (e.g., normal, gamma,
binomial, Poisson) can be obtained by transforming random numbers. It produces stream
of random numbers that appear to be independent identically distributed. All practical
random number generators produce only a finite sequence which is then repeated. Hence,
these random numbers are also called pseudo-random numbers (PRN).

One can use theoretical and empirical tests to see if a PRN generator passes statistical
tests or not. Generally, a good random number generator should have following properties:
it should be distributed uniformly on [0,1] and independent of each other; it should be able
to reproduce a particular stream of random numbers; the cycle length takes long before
numbers start to repeat; the speed should be fast, and requires little storage.

A seed should be initialized to some distinctive value using random number generator.
For every different seed value used in a call, the pseudo-random number generator can be
expected to generate a different succession of results in the subsequent calls. Two different
initializations with the same seed, instructs the pseudo-random generator to generate the
same succession of results for the subsequent calls [6].

3 Parallelism of SSA and Implicit tau method

The purpose of studying chemically reacting system with N species interacting through M
reactions is to compare the number of molecules for each species after a given time T . Let
X(ssa)(T ) and X(it)(T ) represent the number of molecules of the species for SSA and implicit
tau at time T .

As stated before, (2.1) and (2.4) give the numerical algorithm how to get the number of
molecules after time T. Since such process involves with generating the random variables,
the results should be based on generating a large sample of simulations R, and compare the
histogram between the two methods used. Statistically, larger R gives more accurate results.
There idea of parallelism of SSA and implicit tau is that we evenly distribute the number of
simulations R into np processes, with each process generates lR = R/np samples. After the
process of the simulation, all the data can be obtained by MPI_Gather, which collects the
data from each process and stores the data in process rank 0.

3



Total wall clock time in seconds for SSA and implicit tau
p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
604 300 148 76 39 20 11.0 5.8

Table 1: Time table by number of processes used with 4 processes per node, except for p = 1
using 1 process per node, and p = 2 using 2 processes per node for both SSA and implicit
tau.

Another point for such numerical method with random variables is to find a way of setting
up the random number generator on the parallel processors. Here I use the random number
generator from C library. r=rand() returns an integer value between 0 and RAND_MAX, where
RAND_MAX=2147483647. The random number is obtained by r=r/RAND_MAX which returns
a value in [0,1]. The seed can be taken as processor’ id number to guarantee the seed on
each process is different. Other than random numbers in [0,1], implicit tau uses Poisson
random variable, which is obtained by transforming the random numbers in [0, 1]. The code
of Poisson random variables is from [6].

4 Numerical experiment and the study of parallelism

4.1 The example with time performance

The chemical reaction example we use here is a reversible monomolecular system,

S1 + S2
c1→ S4

S4
c2→ S1 + S2

S1 + S3
c3→ S5

S5
c4→ S1 + S3

S3 + S4
c5→ S6

S6
c6→ S3 + S4

S2 + S5
c7→ S6

S6
c8→ S2 + S5

(4.1)

Here M = 8, N = 6. The initial values for X0 = (70, 40, 30, 50, 20, 10)′, and ci = 1 for
i = 1, . . . , 8. Let the final time T = 1. For the implicit tau method, use tau = 0.1.

The running time of parallel computing for a fixed sized problem can be potentially
reduced by spreading the work across a group of parallel processes. The ideal behavior
of the code is using p parallel processes, it would be p times fast. However, there is no
communication between different processes. Therefore, the code should definitely be close
the idea behavior. Hence, there is no need to study the performance of the code. In order
to illustrate the advantage of the parallel code, I ran the code with the number of samples
R = 2× 106 on different number of process for both SSA and implicit tau.

Table 1 shows the total wall clock time for SSA and implicit tau with number of samples
R = 2× 106 with different number of processes. It quite follows the fact that the wall clock

4



µ σ µ ci σ ci
serial code 31.3691 2.9952 [31.3599,31.3785] [2.9887,3.0018]
8 processes 31.3770 2.9913 [31.3711,31.3829] [2.9871,2.9954]

Table 2: Mean, standard deviation and confidence intervals for SSA using serial code and 8
processes.

time reduces to half as doubling the number of processes. It also demonstrates that parallel
computing is an efficient method in the application of scientific computing for such problem.

4.2 Some new ideas on the random number generator

Now I will discuss the random number generator and bring about some new opinions that
how to make the sequences more “random”. As we know, the period of the random number
generator is about 2.1×109. For the above example, SSA uses around 400 time steps for each
simulation, and for each time step it generates 2 random numbers that gives 800 random
numbers for each simulation. Since SSA is a stochastic process, by conservative estimation,
it generates 103 random numbers per simulation. If 106 simulation is only distributed to
one processor, then for each call, it needs about 109 random numbers, which is at the same
degree of the cycle length.

In order to solve the issue, I use the system clock time to obtain the seed for each
simulation. Here I use gettimeofday() function which obtains the current time, expressed
as the resolution as microseconds since the Epoch. Therefore, it is guaranteed that for each
simulation the seed is different, and the random numbers it requires for each call is much
smaller (for the above example, 103) comparing the cycle. In parallel computing, there
might enough synchronization between processes to get same system time, I also need the id
number to calculate the system seed. The id number plus the current time in microseconds
will ensure that the seeds for each process and simulation are different.

An alternative way is to use other random number generator with large cycle length.
One available is Mersenne twister. It is designed to have cycle length 219937 − 1 [7].

4.3 Some statistical analysis of the data

In order to further analyze the samples, one can calculate the mean and standard deviation
of each X(ssa)(T ) and X(it)(T ), then use some statistical tests to find the behaviors of the
samples. Table 2 discusses the mean, standard deviation, 95% confidence interval for mean
and standard deviation of X(ssa)(T ) for SSA. It compares the results based on the serial and
parallel code with np=8. We only study S1, and other species should have the same behavior.
Here T = 1. For the confidence interval of the mean and standard deviation, it shows that
for serial code, the length of the confidence interval for mean is 0.01861 comparing with
0.01173 for running 8 processes. Similarly, the length of the confidence interval for standard
deviation is 0.01316 comparing with 0.008291 for running 8 processes. It indicates that
distributing the samples to more processes gives tighter confidence intervals, which indicates

5



(a) Histogram(10,000 samples) (b) Histogram(1,000,000 samples)

Figure 1: Histogram of X1 with 10,000 samples (serial code) and 1,000,000 samples (np=8).

that we trust the mean and standard deviation more. This is a good result, and the reason
is that running code on more processes takes more seeds and hence the cycle length is long
enough before the random numbers start to repeat.

One way to determine whether the implicit tau method is good is to compare the his-
togram with SSA. Here the histogram is a a graphical display of the probability X(T ) = i,
given the number of simulations R. The probability X(T ) = i is denoted by P (X = i).
Since the initial number of each species is X(0) = (x1, x2, . . . , xN)′. Assume P (X(ssa) = i)
for SSA and P (X(it) = i) for the implicit tau. Here i = 0, 1, . . . , xT , where xT =

∑N
i=1 xi.

After generating number of samples R, compute P (X(ssa)) and P (X(it)) by counting the sum
of the number for each X = i from R samples.

Figure 1 are the comparison of the histograms from 10,000 and 1,000,000 samples for the
SSA and implicit tau method. It was known that implicit tau is a good approximation to
SSA, and it overestimates the variance [5]. Compare the two plots, it shows that for larger
number samples, the histogram is capturing the characteristic of the true behavior more
precisely, and it is smooth around the top. The histogram exhibits a good catch for large
samples, which can be accomplished by using parallel code.

5 Conclusion

In this section, the experimental results show the advantages of parallel code to solve the
stochastic chemical systems from the following aspects. First, it is more efficient with good
time performance to solve large number of sample size. Second, even for the same size of
samples, parallel code gives more reliable mean and standard deviation. Third, it captures
the true stochastic behaviors better by using more samples distributing into those parallel
processes.

6



6 Acknowledgments

The authors would like to thank Muruhan Rathinam and Matthias Gobbert for their assis-
tance about the parallelism of the random number generators. The hardware used in the
computational studies is part of the UMBC High Performance Computing Facility (HPCF).
The facility is supported by the U.S. National Science Foundation through the MRI program
(grant no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with addi-
tional substantial support from the University of Maryland, Baltimore County (UMBC). See
www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.

References

[1] Van Kampen, N.G. (2001). Stochastic Processes in Physics and Chemistry. North Hol-
land.

[2] Gillespie, D.T. (1976). A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403-434.

[3] Gillespie, D.T. (2002). The Chemical Lagngevin and Fokker-Planck equations for the
reversible isomerization reaction. Journal of Chemical Physics, 106, 5063-5071.

[4] Gillespie, D.T. (2001). Approximation accelerated stochastic simulation of chemically
reacting systems. Journal of Chemical Physics, 119 (24), 12784-12794.

[5] Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T. (2004). Stiffness in stochastic
chemically reacting systems: The implicit tau-leaping method. Journal of Chemical
Physics, 119 (24), 12784.

[6] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1992). Numerical
Recipes in C. Cambridge University Press, second edition.

[7] Matsumoto, M., Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 3 (30).

7


