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Abstract The Biological Magnetic Resonance Data Bank

(BMRB) contains NMR chemical shift depositions for over

200 RNAs and RNA-containing complexes. We have

analyzed the 1H NMR and 13C chemical shifts reported for

non-exchangeable protons of 187 of these RNAs. Software

was developed that downloads BMRB datasets and corre-

sponding PDB structure files, and then generates residue-

specific attributes based on the calculated secondary

structure. Attributes represent properties present in each

sequential stretch of five adjacent residues and include

variables such as nucleotide type, base-pair presence and

type, and tetraloop types. Attributes and 1H and 13C NMR

chemical shifts of the central nucleotide are then used as

input to train a predictive model using support vector

regression. These models can then be used to predict shifts

for new sequences. The new software tools, available as

stand-alone scripts or integrated into the NMR visualiza-

tion and analysis program NMRViewJ, should facilitate

NMR assignment and/or validation of RNA 1H and 13C

chemical shifts. In addition, our findings enabled the re-

calibration a ring-current shift model using published NMR

chemical shifts and high-resolution X-ray structural data as

guides.

Keywords RNA � Chemical shift � Secondary structure �
NMR signal assignment and validation

Introduction

RNAs participate in a large and growing number of known

biological functions including catalysis, transcriptional

regulation, maintenance of sub-cellular structure, intracel-

lular trafficking, antiviral restriction, and of course, storage

and transmission of genetic information (Bartel 2004;

Bessonov et al. 2008; Boisvert et al. 2007; Brodersen and

Voinnet 2006; Doudna and Rath 2002; Edwards et al.

2007; Hassouna et al. 1984; Kim 2005; Korostelev and

Noller 2007; Steitz 2008; Wakeman et al. 2007). A sig-

nificant portion of the Eukaryotic genome is transcribed

into non-coding RNAs, and many of these have unknown

functions (Ponting et al. 2009). Secondary structures of

non-coding RNAs with known functions appear to be

evolutionarily conserved (Hamada 2015), and it is now

generally accepted that, like proteins, RNA function is

tightly correlated with structure. Compared to proteins,

understanding of RNA structure–function relationships is

limited, due in part to a paucity of structural information:

There are presently about 2700 RNA-containing structure

depositions in the Nucleic Acid Database (NDB; http://

ndbserver.rutgers.edu), whereas more than 99,000 protein-

containing structures have been deposited in the Protein

Databank (PDB; http://www.rcsb.org/pdb/home/home.do).
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The development of tools to facilitate NMR signal

assignment and/or assignment validation could be of sig-

nificant assistance in expanding the RNA structure pipe-

line. Assignment of chemical shifts to individual atoms is

generally a prerequisite to the determination of angular and

distance restraints used to calculate 3D RNA structures

(Wüthrich 1995). In addition, because chemical shifts are

dependent on 3D structure, they have potential intrinsic

value as restraints for structure calculations. A variety of

approaches have been used to predict chemical shifts in

nucleic acids, including an empirical database approach we

employed that is based on a central nucleotide and its

neighbors (Barton et al. 2013). A similar approach was

originally developed to analyze proton shifts in DNA

(Altona et al. 2000; Kwok and Lam 2013; Lam 2007; Lam

et al. 2007; Ng and Lam 2015). Trends in shift patterns for
13C have also been determined by the examination of

database depositions (Fares et al. 2007). Where 3D struc-

tural information is available chemical shifts can be pre-

dicted using physical parameters such as ring current shifts

(Cromsigt et al. 2001; Dejaegere et al. 1999; Sahakyan and

Vendruscolo 2013), data mining approaches with multiple

structure based attributes (Frank et al. 2013), distance-

based approaches (Frank et al. 2014), or ab initio quantum

mechanical calculations (Fonville et al. 2012). A primary

motivation for developing an RNA chemical shift predic-

tion algorithm was to be able to predict shifts in the

absence of 3D structures, so that they could be used as an

aid to the NMR assignment process. We have therefore

focused on developing approaches that use attributes from

the primary and secondary structure as input, and that are

trained with shift values available in database depositions.

Our previous work focused on predicting 1H NMR

chemical shifts of non-exchangeable protons for residues in

A-form helical regions of RNAs (Barton et al. 2013). That

protocol, which employed a linear regression based method

to estimate the contribution of different chemical envi-

ronments derived from the nucleotide sequence and base-

pairing, was able to predict shifts with a high degree of

accuracy (cross validated rms deviation of 0.06 ppm).

However, the approach required labor-intensive examina-

tion of various data types to generate the attribute

descriptors used in training the prediction model, and was

only used to model 1H NMR chemical shifts for base-

paired residues (G-C, A-U, or G*U) that were both pre-

ceded and followed by additional base paired residues.

Unlike DNA, RNA is often found in a variety of non-

helical conformations, and these non-helical residues often

play central functional roles. Restricting predictions to

helical regions therefore meant that assignments for resi-

dues in interesting structural regions were not predictable.

The ability to predict 13C NMR chemical shifts could also

be useful, both for facilitating assignment of heteronuclear

1H-13C NMR spectra and as potential restraints for struc-

ture determination. We therefore expanded our prediction

model to include both hydrogen and carbon shifts, and also

to include residues in non-A-form RNA conformations (i.e.

the complete RNAs under investigation). We also auto-

mated the data mining and secondary structure assessment

protocols, enabling convenient refinement of the prediction

models as new data are added to the databanks, and have

incorporated these new tools into both stand-alone and

existing software packages.

Methods

The NMR chemical shift data were analyzed using a set of

computer programs that are a major rewrite and extension

of the RNAShifts program described in our earlier publi-

cation (Barton et al. 2013). The software was rewritten in

the Python programming language and several major

enhancements were made. First, the retrieval of data files

was automated. The program begins by using an input file

with a list of entry numbers corresponding to depositions at

the Biological Magnetic Resonance Data Bank (BMRB).

This input list was generated using the BMRB web site to

search for entries containing RNA and RNA-protein shifts.

RNAShifts2 automatically fetches the corresponding ver-

sion 3.1 BMRB STAR file for each entry, and then using

the BMRBLIB software extracts the PDB ID within the

star file, and fetches the PDB structure file from the PDB

website (Fig. 1).

Our original data analysis relied on the tedious manual

analysis of PDB files, literature references and the BMRB

entries to generate our set of predictive attributes. The

second major advance was to largely automate this process

(Fig. 1). Attribute generation involves the use of our own

Python scripts and invocations of the external programs

Defining the Secondary Structures of RNA (DSSR) and

Structures of Nucleic Acid-Protein Structures (SNAP),

components of the 3DNA suite of software programs (Lu

and Olson 2008; Lu et al. 2010). Using the structural

information from the PDB file, DSSR identifies secondary

structural information including base pairing, multiples,

pseudoknots, multiple chains, and other attributes. SNAP

also uses the PDB file to identify any protein interactions

within the RNA structure. The output files of these two

external programs are parsed and the relevant information

is synthesized into an output template file that contains all

the derived attributes for each BMRB entry in a format

used for RNAShifts2 as illustrated in Fig. S1 of the Sup-

plementary Material. There were cases where RNAShifts2

could not properly generate a template for certain BMRB

entries, where no PDB file was available, or where we had

locally derived data that hadn’t yet been deposited in the
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BMRB database. To handle these situations we allow the

software to check for and use manually generated template

entries. Intermediate files (including BMRB entry files and

PDB files) are cached so when the software is run multiple

times the files are only fetched or generated if they are not

already present.

The RNA chemical shift prediction analysis focuses on

the central nucleotide in a stretch of five nucleotides: [50-
ni-2–ni-1–N–ni?1–ni?2-3

0] (N = nucleotide for which the

NMR shifts are being evaluated; n = neighboring nucleo-

tides). The list of attributes generated using the automated

protocol described above thereby describes the chemical

environment surrounding the central nucleotide. Each

nucleus is currently described by a set of 10 attributes. The

first five represent the nucleotide and its base paired

nucleotide (if any) for each of the five sequential positions.

Watson–Crick base pairing, loops, mismatches and similar

attributes are all implicitly represented in the base pair

entry at each position. The first (ni-2) and last (ni?2)

positions are represented in a simplified format where the

nucleotide and its base pair are only presented as being

either a purine or pyrimidine (rather than the four specific

nucleotides used at the other three positions). Empty values

for the first one or two, and last one or two positions, are

used at the 50 and 30 termini. The remaining five attributes

represent any additional attributes for each of the five

positions. These include values such as the position in a

tetraloop, multiplets, stacking, and pseudoknots. Figure S1

of the Supplementary Material illustrates a simple RNA

sequence, the text file description of the template, and an

example set of attributes that are used as input to the

support vector regression software.

Available chemical shift values were extracted from the

BMRB files for non-exchangeable (H8, H2, H6, H5, H1
0,

H2
0, and H3

0) protons and the corresponding carbon nuclei.

Inclusion of data for carbon nuclei is another significant

advance from our previous work. Adding additional atoms

or elements (N or P) requires the trivial addition of the

element and atom names to an input file. At present we’ve

restricted the program to the carbon and hydrogen elements

and the above atoms, as they are the ones with the most

comprehensive set of currently available data.

In our original work we used a linear analysis with

PACE regression (Wang and Witten 2002) to model the

contributions of each attribute to the observed chemical

shift. This allowed a simple calculation of the modeled

chemical shift, and an understanding of the relative con-

tributions of different attributes. The linear contribution

model however limits the ability to model different envi-

ronments without using an excessively large number of

attributes. In the current work we’ve allowed for more

complex attribute contributions by using support vector

regression (SVR) with non-linearity provided by a Radial

Basis Function Kernel. There is a wide range of data

mining algorithms that could potentially be used for pre-

dicting chemical shift values from a set of attributes

including decision trees, neural networks, and linear

regression (Witten et al. 2011). The SVR technique was

chosen both for its ability to produce a sparse solution at

the global minimum (Bishop 2006), but also because effi-

cient code was available to readily include the prediction

model as an integrated component in NMRViewJ. Alter-

native methods such as neural networks were investigated,

but require complex decisions about network topology and

the code libraries did not lend themselves to simple

embedding of the prediction code. SVR calculations were

performed using the Java library, libsvm (Chang and Lin

2011) which could be used both in a standalone mode for

training, but also used as an integrated library in

NMRViewJ. As with our previous work we assessed the

Fig. 1 Flow chart for the automated data retrieval and analysis

process. Steps enclosed in the shaded box represent the automated

protocol used for fetching data and attribute generation. Steps within

the dashed box are involved in modeling the data. The SVR boxes

encompass using the SVR algorithm to train a model, predict shifts

and calculate rms errors. Output at the last step includes saving the

results of the tenfold cross validation
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quality of the predictions using a tenfold stratified cross-

validation during our analysis. This method trains the

model on 90 % of the data and uses this to predict the

remaining 10 %. This process is repeated ten times using a

different set of data each time and derives rms deviations

based on the whole process. Cross-validation was done as

implemented in the libsvm library.

The quality of predictions depends in part on factors that

are not included in the training model and on the quality of

the input data. We did not explicitly include sample con-

ditions (pH, temperature, ionic strength, etc.). These can

have both an overall effect on the average shifts, and an

influence on the shifts of particularly sensitive nuclei.

Factors that influence the overall quality of the data include

errors in referencing and specific miss-assignments. We

minimize the impact of these factors on the performance of

the predictive models in two ways: automatic reference

adjustment and outlier removal. We skipped any BMRB

files where we could detect that the molecular structure had

unusual attributes such as DNA-RNA hybrids or extensive

use of non-standard nucleotides or nucleotide linkers as

these were unlikely to be represented in sufficient numbers

for accurate modeling.

Reference adjustment was performed by a two-step

procedure. First we used a protocol for adjusting the carbon

chemical shifts based on the expected shifts of GC–GC

pairs commonly found at the termini of synthesized RNA

(Aeschbacher et al. 2012). Certain carbon shifts in these

terminal nuclei have characteristic shifts. Deviation of

measured shifts from the expected value is particularly

good for detecting a common error of approximately

2.7 ppm made when calibrating the carbon shifts. Next we

used the consensus-based procedure described in our ear-

lier publication. In this protocol the predictive model is

trained once and the average error for the proton and car-

bon shifts from each BMRB entry is calculated. The

average error in the prediction is then subtracted from each

shift and the model is then retrained with the now corrected

shift data. This is a useful addition to the reference protocol

because not all sequences have the GC–GC terminal pairs

or some necessary shifts may be missing. Additionally, we

noted that different referencing errors could be observed

for different carbon types. For example, the reference error

for carbon atoms in the ribose ring could be different from

the error for base carbons, suggesting that users made

different reference errors in different NMR experiments.

Because of this we calculated the reference error separately

for ribose and base atoms. If the error was similar for both

categories a single average correction was used.

The compensation for assignment errors and other non-

modeled effects on specific chemical shifts was done by

manually and automatically trimming outliers. Obvious

errors in shifts that were observed in plots were manually

removed by entering an atom identifier into a text file.

Atoms with entries in this error file were ignored during

subsequent analysis steps. The automated trimming was

performed by running two passes of the prediction analysis.

The rms deviation between the experimental and predicted

values were calculated using all the data for each atom of

each of the four bases, and any data values that were

beyond three times the measured rms deviation value were

marked as being outliers. The second pass was then per-

formed on the database excluding the outliers.

Output of the above analysis includes the cross-vali-

dated rms for each atom, an overall rms for carbon and

protons, and prediction models in libsvm format. Addi-

tionally, average prediction errors for each BMRB file and

various atom specific reports can be generated.

The good results of the prediction analysis (see ‘‘Results

and discussion’’ section) suggested the possibility of using

our model to calibrate parameters used in deriving chem-

ical shifts with a ring current shift model. We used the

prediction model to predict the chemical shifts of the

sequence of the 19-residue A-form helical RNA of chains

C and D of PDB entry 1QC0 (1.55 Å resolution). The

sequence and helix secondary structure were provided to

our prediction software and predicted proton shifts

determined.

Ring current effects can be described (Case 1995) as the

product of three terms, G(r), a geometric factor that

depends on the position (r) of the target atom relative to the

aromatic ring, B a constant representing contributions of a

benzene ring (here set to 5.455 9 10-6 Å), and i an

intensity factor that scales the contribution of a specific

ring type to that of benzene:

rrc ¼ iBG rð Þ ð1Þ

The PDB model was loaded into NMRViewJ and for

each proton with a predicted chemical shift we calculated

the geometric contribution (G) of each aromatic ring to the

proton (Haigh and Mallion 1980) multiplied by the i and B

values given by Case (1995). A matrix equation was then

established as follows:

Ax ¼ b ð2Þ

Each row of the matrix A and vector b represents one of

the predicted protons. The first 13 columns of matrix A are

binary values with only one of the columns set to 1. That

column represents the type of the proton. Proton types were

AH2, AH8, GH8, CH5, UH5, CH6, UH6, AH10, GH10,
CH10, UH10, H20, H30. Preliminary analysis showed little

difference in shifts for H20 and H30 so we minimized the

number of total attribute columns by grouping of H20 and
H30 into single types for the four different bases. The final

column of matrix A contains the sum of all the ring current

contributions of all nearby rings in the structure. Figure 2
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illustrates the matrix equation. The matrix equation was

then solved for the vector x using a Singular Value

Decomposition (SVD). The first 13 elements of the solu-

tion vector represent the shift of each of the 13 proton types

in the absence of any aromatic ring current shift (other than

the effect of a given aromatic ring on its own protons). The

final element of the solution vector represents a scaling

factor that multiplies the ring current contribution calcu-

lated using the Haigh-Maillion theory and the intensity

factors calculated by Case (1995).

The utility of the new reference shifts and the scaled

intensity factor in doing ring-current shift calculations of

new structures was established by calculating the chemical

shifts of protons in a set of PDB structures with assigned

chemical shifts. For this test we used a set of PDB models

used previously (Frank et al. 2013). For each PDB model,

the rms deviation of the calculated shift with the assigned

values from the corresponding BMRB file was determined.

We used the structures as obtained directly from the PDB,

without any additional refinement. Calculated shifts were

done in four ways: using the average value for the proton

from the BMRB database, using ring-current shifts as

described in Case (1995) [but using our own software

implementation, not the original Shifts program (Xu and

Case 2001)], using the ring-current shifts with the above

calibration, and using our SVR prediction.

Results and discussion

Referencing

Generation of useful shift prediction models from data-

base-derived shifts requires properly referenced and

assigned data. Deposited shifts from both protein and

nucleic acids are however subject to errors of referencing

and errors in assignment. A variety of methods for

checking protein chemical shift assignments have been

developed, including LACS (Wang et al. 2005), RefDB

(Zhang et al. 2003) and PANAV (Wang et al. 2010). In our

previous work on RNA shift prediction we used similar

procedures to that used in RefDB and that work by per-

forming two cycles of prediction. The average error for

each BMRB entry after the first cycle is used as a correc-

tion before starting the second prediction cycle. An alter-

native protocol for correcting referencing errors in RNA

spectra based on the expected shifts of five specific atoms

has also been described (Aeschbacher et al. 2012). In the

current study we used a combination of the two methods.

As the two-cycle prediction-correction technique basically

works by forming a consensus reference and then cor-

recting datasets relative to that it’s useful to ensure that

obvious errors are minimized before the first cycle. So on

datasets that are amenable to the procedure we used the

procedure of (Aeschbacher et al. 2012) prior to the first

prediction cycle. Because not every data set has necessary

atoms for 5-atom correction procedure, it is important to

also do the two-cycle correction.

Figure 3 shows an example of three different BMRB

entries with different referencing situations. The plots are

the deviation between predicted and measured shifts and

are done without any reference correction. BMRB entry

5705 can be seen to have an average error near 0.0

demonstrating that the data set is well referenced and that

shifts can be well predicted with our protocol. BMRB entry

18,975 has an average error near 2.7 ppm, a value con-

sistent with a common error of referencing where the ref-

erence is set to tetramethylsilane (TMS) rather than 2,2-

dimethylsilapentane-5-sulfonic acid (DSS) (Aeschbacher

et al. 2012). BMRB entry 5932 has the property that the

chemical shifts for the carbons of the aromatic bases are

correctly referenced, but the sugar carbons are offset by an

Fig. 2 A representation of the math matrices used for calibrating

ring-current shift parameters. The first and last shaded regions

represent the matrix A and vector b that are input into the Singular

Value Decomposition (SVD) algorithm to solve the equation

Ax = b for the vector x (representing the contribution of each term).

The actual matrix A used has additional rows for the remaining atoms

in the structure, and additional columns for additional atom types (for

the A and U residues), and the vector b has additional rows (for the

additional atoms). The final column, labeled Factor, represents the

sum of product of the geometric factors and ring current intensity

parameter (Case 1995) calculated for all aromatic rings near the

corresponding atom. All the other columns of the matrix are set to 0,

except the column that represents the atom type for that row
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amount suggesting that the datasets used to acquire them

were incorrectly referenced to tetramethylsilane (TMS).

Errors such as that found in entry 5932 led us to calculate

the reference correction for aromatic base carbons and

sugar carbons separately. If the two corrections were sim-

ilar they were averaged, otherwise the two sets of carbon

shifts were corrected separately.

Outlier analysis

Analysis of the data shows that outliers, values where the

error in prediction is significantly larger than was typical,

were present. These outliers could be due to unusual

chemical environments where our prediction model doesn’t

work well, or could be due simple errors and mis-assign-

ments in the original datasets. Some errors were quite

obvious and were manually eliminated. For example,

BMRB entry 19,018 has a variety of shifts set to precisely

0.0. We assumed that these were errors and eliminated

them. Other errors show particular patterns. For example,

Fig. 4 shows a plot of the predicted versus measured values

for the C20 and C30 atoms from reference corrected, but

untrimmed analyses. The plot shows groups of shifts for

C20 atoms that are at the expected values for the C30 atoms,

and shifts for C30 atoms at the expected values of C20

atoms. This pattern of shifts located symmetrically across

the diagonal are consistent with, but not definitive proof of,

what would happen if the assignments for these two atoms

were interchanged. We did not attempt to correct for pos-

sible interchange of the C20 and C30 shifts, but the effect of
this would be minimized by our overall protocol of auto-

matically trimming out shifts that were more the 3 times

the average rms error for each atom type.

The protocol used for removing outliers undoubtedly

removes some data values that are correct and thereby

minimizes the range of chemical shift environments that

are successfully predicted by the algorithm. However, the

limited number of available chemical shift datasets for

RNA available from the BMRB means that some attribute

combinations are represented by a very small number of

examples. Indeed for many attribute combinations only

zero or one data value is available. Given this fact it is

almost impossible to automatically and correctly distin-

guish between outliers that are due to poorly predicted

valid data rather than invalid data values. We included the

trimming protocol as we expect that retaining errant values

could corrupt the prediction model that results from the

training process. The total number of shifts removed in our

protocol is, however, relatively small. Approximately 2 %

of shifts were removed in our analysis. By comparison, the

‘‘reduced’’ dataset used in (Cromsigt et al. 2001) removed

25 % of the shifts. We expect that as additional datasets are

deposited more examples of unusual attribute environ-

ments will be available and the number of valid data values

a

b

c

Fig. 3 Plots of the deviation

between measured and

predicted values (dpred - dmeas)

for three different BMRB

entries. The plots are from

calculations done without using

our offset correction and

trimming protocols, so represent

fits to the raw chemical shift

data. Data is taken from

prediction runs using all BMRB

entries, not just those illustrated.

a BMRB entry 5705, b BMRB

entry 18,975, c BMRB entry

5932. The dashed line

corresponds to the common

error of 2.7 ppm (Aeschbacher

et al. 2012)
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eliminated as outliers will be reduced. We provide a full

list of trimmed data values in Table S1 of the supple-

mentary information.

Data retrieval and template generation

Our previous work relied on manual download and anal-

ysis of data files. This required an amount of time and

effort that are a barrier to regular updates of the training

database. However, the relatively small number of RNA

entries in the BMRB makes it important to keep adding

new entries to our training database to ensure broad

coverage of possible RNA sequences and secondary

structures. Automation of the data retrieval and template

generation has allowed us to develop a routine protocol

(Fig. 1) for regularly updating the database. In the first

update since our previous work we’ve significantly

increased the number of BMRB entries. The current

automated protocol relies on having available PDB files

and so not all entries could be analyzed automatically

with the current protocol. We should note that while PDB

files are used for determining features such as the sec-

ondary structure, we are not making direct use of 3D

coordinates in the prediction model.

Of the 254 BMRB entries automatically downloaded,

twenty-one were missing PDB IDs, eleven were not com-

patible with the DSSR program, and two had invalid PDB

entries. Additional entries were automatically dropped

from the analysis, when, for example, the software couldn’t

make an exact match of the sequence in the BMRB entry

with that in the PDB file. The final analysis used a total of

187 files, a significant increase from the 126 used in our

original analysis. The list of BMRB entries that were

considered and the status of each is shown in Supple-

mentary Table S2. Replacing the analysis done by an

experienced person with the automated routines could

result in errors in the analysis. Before proceeding with the

use of the full database, we compared the analysis done

with the automatically generated template with that

resulting from the original manual analysis. To do this, we

performed the chemical shift modeling calculations on the

original manual template versus the automatically gener-

ated template for only the original 126 BMRB entries. In

this way, any differences in the calculations would only be

based on the differences of the analysis and template cre-

ation and not on any extra BMRB entries.

Training the prediction model using our new scripts and

the new SVR regression fitting, but with the manual attri-

bute template from our previous publication (Barton et al.

2013) yields similar results to that obtained previously. We

previously reported the analysis of 3758 hydrogen shifts in

A-form helical regions with an overall rms deviation of

0.056 ppm. Our new procedure, but with the same tem-

plate, used 4066 shifts and resulted in an overall rms

deviation of 0.052 ppm. The new protocol uses a somewhat

greater number of shifts in part because of new attribute

categorization code and the details of the computerized

identification of attributes.

Fig. 4 Plots of predicted versus

measured values for the C30 and
C20 atoms. Data is taken from

the output of a prediction run

done with the offset correction

protocol, but without any

trimming of outliers
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Table 1 compares the manual and automated analysis

for both hydrogen and carbon nuclei in more detail. The

analysis with the manual template used a total of 11,953

hydrogen nuclei and 5559 carbon nuclei, while the auto-

mated template used 12,354 and 5559 respectively. In

calculating the overall rms predictions we did the calcu-

lation separately for atoms in canonical and non-canonical

helical regions, other regions, and for all atoms together

(see Table 1 footnotes for definitions of the categories).

The training and validation protocol was run using the

manual and automated templates. The cross validated rms

(xrms) was calculated during the prediction analysis and

done without dividing into the three categories. The error

in prediction as measured by the rms deviation between

measured and calculated shifts was essentially the same

when using the automatically generated template in com-

parison to that using the completely manual template. For

the hydrogen nuclei analyzed with the manual template, the

rms for the canonical, non-canonical, other and all atoms

were 0.05, 0.06, 0.09, and 0.08 ppm, respectively. Using

the automated template for hydrogen nuclei resulted in the

same values (within 0.01 ppm) indicating that our auto-

mated template generation generates comparable results to

the manual analysis. Comparison of the carbon nuclei also

showed good agreement between manual and automated

templates. Using the manual template the rms values for

the canonical, non-canonical, other and all-atoms were

0.41, 0.42, 0.79 and 0.68, respectively. Analysis with the

automated template agreed within 0.02 ppm. The cross-

validated rms for the analysis of hydrogen nuclei was

0.12 ppm with either the manual or automated template.

The cross-validated rms for carbon is of course higher than

that for hydrogen, but the manual and automated templates

were both 0.80 ppm. The above results confirm that our

Table 1 Prediction results for

different attribute categoriesa
Category Manualb Automatedc Automated-Plusd

rms n rms n rms sdev n

Hydrogen

Cross-validated 0.12 12,131 0.12 11,953 0.13 1.33 18,774

Canonicale 0.05 2007 0.05 2061 0.06 1.28 3020

Non-canonicalf 0.05 2059 0.06 1966 0.07 1.29 2903

Otherg 0.09 8065 0.10 7926 0.11 1.35 12,851

All 0.08 12,131 0.08 11,953 0.10 1.33 18,774

Carbon

Cross-validated 0.80 5554 0.80 5559 0.83 28.44 9642

Canonicale 0.41 1040 0.41 1072 0.46 28.04 1630

Non-canonicalf 0.42 949 0.42 916 0.47 28.34 1526

Otherg 0.79 3565 0.81 3571 0.85 28.57 6486

All 0.68 5554 0.69 5559 0.75 28.44 9642

a Output from the support vector regression analysis. The SVR is done separately on each atom type. This

table presents the values aggregated across all the hydrogen and carbon atoms used. The columns labeled

rms represent the square root of the mean of squared deviations between predicted and experimental values

for all the data in the corresponding category. The rms values in the cross-validated rows are the output

from the SVR program when performing a tenfold stratified cross-validation and are based on the data

values in all categories. Other rms values are calculated on the indicated subset of data values. The columns

labeled n represent the number of data values used in the specified category. The column labeled sdev is the

standard deviation of all the experimental hydrogen or carbon shifts in the corresponding categories and is

included only for the automated-plus section as this measure of dispersion is very similar for all three

groups
b Manual refers to analysis done using the attribute templates created by manual analysis and the shift

datasets used in our previous analysis (Barton et al. 2013)
c Automated refers to analysis done using the mostly-automated attribute generation described in this paper

using the same set of datasets as in our previous analysis
d Automated-Plus refers to analysis done using the automated analysis described here and the new larger

number of datasets
e Canonical bases are the central base in a 5 base stretch in which all 5 base pairs have GC or AU base

pairing and no other attributes such as being in a triplet, kissing interaction or pseudoknots are present
f Non-canonical bases are the same as canonical, but the first and/or fifth bases may be GU wobble base

pairs, mismatched, unpaired (e.g. loops) or not-present (e.g. the 50 or 30 termini)
g Other bases are all bases that are in neither the canonical nor non-canonical categories
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largely automated attribute analysis procedure is producing

results similar to that obtained by tedious manual analysis.

Increase in shifts and attributes

Using the automated analysis and the expanded list of

BMRB entries greatly increased the total number of shifts

in the database (Table 1). The new automated downloading

and analysis protocol results in a database with 58 % more

hydrogen nuclei and 74 % more carbon nuclei. Increasing

the size of the database was accomplished without signif-

icant increase in prediction error. The cross-validated rms

for all hydrogen shifts was increased by only 0.01 ppm to a

value of 0.13 ppm, and carbon prediction rms was

increased by only 0.03 ppm to 0.83 ppm.

The SVR models resulting from training on the chemical

shift database yields prediction values even if the exact set

of attributes is not present in the training database, but it is

of course expected that prediction quality will be better if

there are examples in the database. Accordingly it is rele-

vant to determine the increase of unique attributes relative

to our previous publication. The numbers of unique attri-

butes for the manual, automated, and automated-plus were

1750, 1671, and 2389, respectively. We expect that fewer

attribute combinations are available in the automated pro-

cess in comparison to the manual analysis, on the original

list of BMRB entries, because the automated analysis does

not yet take into account some attributes that can be

identified with careful manual analysis. Increasing the

database size, however, significantly increased the number

of unique attributes because of the greater variety of RNA

molecules included. And the good results described above

indicate that we have an appropriate set of attributes.

Nucleotide base environments

In our previous publication we restricted the analysis to

only residues that were within A-form helical regions. This

was done, in part, because we expected that the linear

analysis of chemical shifts used was less able to model

more varied conformations, and because of the difficulty in

manually analyzing all regions. In the current study we

expanded this to include all regions of RNA secondary

structure as defined using dot-bracket notation. As indi-

cated in Table 1 this dramatically increases the total

number of shifts that can be used for training and predic-

tion. Approximately two-thirds of the hydrogen (12,851 of

18,774) and carbon (6486 of 9642) shifts are in regions

labeled other. Predictions in these regions are not as good,

as measured by the rms prediction error, as those in

unperturbed helical regions, but are still in a range

(0.11 ppm for hydrogen and 0.88 ppm for carbon) that

should be very useful for aiding in the assignment of RNA

spectra. Plots of the predicted versus measured values for

hydrogen and carbon for the full dataset list are shown in

Fig. 5. This figure shows the data for the canonical, non-

canonical and other shifts (see Table 1 for category

descriptions) plotted separately. Some shifts in the canon-

ical hydrogen plot (Fig. 5a) appear to be outliers that might

be expected to have been trimmed in the outlier procedure.

That procedure trims shifts whose prediction errors are 3

times the rmsd. Since the rmsd is calculated from the

analysis of all shifts some shifts that might otherwise be

trimmed are retained. Further refinements of our code

could be done to calculate the rmsd for trimming for

individual categories.

The actual SVR regressions are done on each atom type

separately and the number of shifts and cross-validated

RMS are shown for each atom in Table 2. Most hydrogen

atoms are predicted with an rms error near the mean value

of 0.13. The largest prediction error (0.20 ppm) was found

for the H2 proton of adenine. Prediction errors for most

carbon atoms were similar to the mean value of 0.83, but

the values for the C30 carbons appeared noticeably higher

with an average value of 1.29 ppm (Table 3).

Ring current shift calibration

Chemical shifts are ultimately determined not by the

somewhat abstract set of attributes we use in this analysis,

but by specific physicochemical interactions. In RNA the

apparent currents induced in aromatic rings largely domi-

nate these effects. Empirical calibration of the magnitudes

of the ring-current shifts and other contributions to RNA

chemical shifts has been hampered by the lack of high

quality structural data. Calibration of similar mechanisms

in protein chemical shifts has generally been done by using

NMR derived chemical shifts combined with structural

information calculated not from the NMR structures, but

rather from structures derived from X-ray crystallography.

The great difficulty of obtaining appropriate crystals of

RNA has meant that there is not a large set of X-ray

structures with NMR chemical shifts available for per-

forming the calibration.

One method of calibrating the ring-current shifts has

relied on quantum-mechanical calculations of the effect of

aromatic rings on a proton positioned in various orientations

relative to the ring. These calculations form the basis of the

Shifts program (Xu and Case 2001). One of the possible

issues in translating these calibrations from the idealized

simulation environment to predicting shifts in actual RNA

molecules is the fact that RNA molecules can be highly

dynamic (Bothe et al. 2011). Ring current effects are then

likely to be averaged over a variety of conformations.

As an alternate approach to calibration we’ve used a

high-resolution X-ray structure of RNA as the source of
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structural information, and chemical shifts predicted using

the methodology of this paper. By doing this we can take

advantage of the multiple available assigned shift sets that

are used in training our model. The chemical shift was

calculated as an intrinsic chemical shift plus a contribution

from the nearby aromatic rings. The ring-current contri-

bution was modeled as a value calculated using the indi-

vidual ring current factors for each ring type as calculated

by Case (1995), but with the contribution scaled by an

adjustable factor. The output of the linear least squares

analysis of the data is a new set of intrinsic shifts for each

proton, and a single overall scaling parameter. The best fit

was obtained with a scaling factor of 0.53. This analysis is

strictly empirical, but the scaling factor less than 1.0 sug-

gests that the magnitude of the ring current effect is over-

estimated in the quantum mechanical calculations of model

systems relative to that observed in dynamical RNA

structures in solution. Our analysis was set up to also allow

the contribution of individual ring types to be calculated.

The rms deviation of predicted from measured shifts for the

analysis done using a single adjustable scale factor with the

target factors from Case (1995), and that using adjustable

values for each ring type were both 0.10 ppm. The lack of

an improvement in fit indicates that there is no statistical

justification in using the additional parameters and so we

only use the scaled Case parameters. Obtaining calibrations

for individual ring factors would likely require using

additional structural models.

Evaluation of chemical shift predictions ought to be

done relative to an appropriate baseline, which we consider

to be simple prediction based on the average chemical shift

for a given atom and nucleotide type. Predictive models

that are based on secondary or tertiary structures should

result in a significant improvement. We’ve compared var-

ious models by predicting the shifts of a set of BMRB

entries with corresponding PDB models that were previ-

ously used (Frank et al. 2013).

Figure 6 shows predictions on these 16 different PDB

models. Predictions were done using the simple average

shift from the BMRB data, the ring current shift model as

a b

dc

e f

Fig. 5 Plots of predicted versus

measured values for the

complete set of atoms obtained

with the automated procedure

described here. a, c and e are

hydrogen shifts, and b, d and

f are carbon shifts. a and b are

canonical shifts in helices, c and
d are non-canonical shifts in

helices, and e and f are other

shifts (see Table 1)
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implemented in NMRViewJ using both the original

parameters from Case and our re-calibrated intrinsic shifts

and scaling factor, and the values predicted using the

secondary structure based SVR model. The average RMS

for each prediction type is also indicated. Simple prediction

with BMRB averages gives an overall RMS of 0.27 ppm.

With this set of structures, and our implementation of the

ring-current shift model, no improvement in prediction

quality is obtained with the original Case parameters. The

rms we determined (0.33 ppm) is similar to that

(0.35 ppm) reported by (Frank et al. 2013) using the

SHIFTS (Dejaegere et al. 1999) program itself suggesting

that our implementation of the model is valid. We obtain a

significant improvement in the prediction quality using our

ring-current calculation code, but with the empirical

recalibration of the parameters (rms = 0.22 ppm). A

somewhat surprising result is that the secondary structure

based prediction using our current SVR gives a significant

improvement in prediction quality (rms = 0.13 ppm) rel-

ative to the 3D structure based ring current calculation.

This is likely in part due to the fact that NMR 3D structures

of RNA are not always of high quality in part because their

calculation depends significantly on force field parameters

(Tolbert et al. 2010) and there is a virtually complete lack

of X-ray structures with corresponding NMR chemical

shift sets. Additionally dynamics are not included in the 3D

shift predictions and may significantly affect the average

shifts.

Recently, two new algorithms for 3D shift prediction

were described. The first is a ‘‘black box’’ approach based

on a large number of descriptors used in a random forest

training algorithm (Frank et al. 2013). The second algo-

rithm is based on simple calculation based on inter-atomic

distances in a 3D structure and is therefore easier to

Table 2 Prediction results for

different atom typesa
Hydrogen n trim xrms sdev Carbon n trim xrms sdev

AH2 911 24 0.20 0.41 AC2 569 6 0.61 1.02

AH8 903 23 0.16 0.25 AC8 557 7 0.68 1.09

GH8 1317 45 0.14 0.34 GC8 767 18 0.69 1.61

CH5 1148 22 0.11 0.26 CC5 597 21 0.54 0.68

UH5 854 19 0.14 0.28 UC5 461 13 0.74 1.04

CH6 1154 22 0.10 0.19 CC6 649 15 0.59 0.95

UH6 863 18 0.11 0.17 UC6 490 10 0.81 1.19

AH10 905 20 0.14 0.19 AC10 527 10 1.03 1.29

GH10 1321 26 0.12 0.30 GC10 694 10 0.93 1.31

CH10 1143 14 0.12 0.18 CC10 605 17 0.63 1.07

UH10 845 20 0.14 0.19 UC10 471 13 0.92 1.42

AH20 834 15 0.15 0.19 AC20 352 11 0.72 0.80

GH20 1215 32 0.12 0.21 GC20 508 18 0.67 0.76

CH20 1034 29 0.10 0.19 CC20 467 12 0.48 0.87

UH20 779 15 0.13 0.21 UC20 361 10 0.45 0.56

AH30 767 18 0.14 0.19 AC30 334 8 1.37 1.71

GH30 1125 31 0.13 0.23 GC30 468 14 1.16 1.65

CH30 959 23 0.11 0.15 CC30 434 11 1.07 2.02

UH30 697 6 0.11 0.15 UC30 331 1 1.56 2.16

Total 18,774 422 0.13 1.33 Total 9642 225 0.83 28.44

a Output from the support vector regression analysis. The columns labeled n represent the number of shifts

of each atom type used in the SVR regression analysis. The columns labeled trim represent the number of

shifts that were trimmed out between the first and second SVR steps. The columns labeled xrms represent

the square root of the mean of squared deviation between predicted and measured chemical shifts as

calculated in the tenfold cross-validation. The column labeled sdev is the standard deviation of all the

experimental hydrogen or carbon shifts for the corresponding atom type

Table 3 Ring current shift parametersa

AH2 AH8 GH8 CH5 UH5 CH6 UH6

7.93 8.33 7.87 5.84 5.76 8.02 8.01

AH10 GH10 CH10 UH10 H20 H30 Ratio

5.38 5.37 5.45 5.50 4.54 4.59 0.559

a Output from the ring current shift calibration protocol. Entries for

specified atoms are the reference shifts to which the ring current

correction is added. Ratio is the value by which the intensity factor, i,
of Eq. (1) was scaled
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implement within molecular dynamics simulations to aid in

structure refinement (Frank et al. 2014). Prediction quality

was described in this paper (Frank et al. 2014) in terms of

the mean absolute error (mae), rather than the rms devia-

tion and was shown to be better, as analyzed on all bases in

a set of PDB files not used in the training, than that using

either the SHIFTS (Dejaegere et al. 1999) or

NUCHEMICS (Cromsigt et al. 2001) programs that are

based on ring current shifts. The lack of a squared term in

the mae (as compared to rms) gives less weight to values

with large deviations. Using the mae minimizes the effect

of outliers caused by errors, but may deemphasize pre-

diction quality in non-helical regions where prediction may

be more difficult. Our recalibrated ring-current model, on

the set of PDB structures reported here, gives a similar

prediction error (mae = 0.17) compared to that previously

reported (Frank et al. 2014) (mae = 0.15) indicating that

even without using 3D structural information we can obtain

good prediction quality.

Conclusions

The present study shows that high quality predictions can

be made for both proton and carbon chemical shifts in

RNA molecules using information that is primarily derived

from the nucleotide sequence and secondary structure. In

particular, we did not train our predictive models based on

coordinates from 3D models, in part because RNA struc-

ture determination relies heavily on force field parameters

used during refinement, and many of the deposited RNA

structures have helical properties that deviate significantly

from expected values (Tolbert et al. 2010). Prediction

models calibrated in this way can be used early in the NMR

analysis process to aid in the assignment of new sequences.

We’ve implemented the prediction tool within NMRViewJ

(Johnson and Blevins 1994) where it can be used both to

aid in the manual assignment of RNA molecules and to

validate assignments. High quality predictions will also be

useful in automated tools that are under development in our

own and other labs (Aeschbacher et al. 2013; Krahenbuhl

et al. 2014; Sripakdeevong et al. 2014; van der Werf et al.

2013).

The relatively small number of chemical shift deposi-

tions for RNA molecules makes it important to continue

training the prediction model as new data becomes avail-

able. The implementation of the automated procedure

described here makes the protocol very simple and should

facilitate this ongoing process. Comparison with our pre-

vious manual procedure indicates that the automated pro-

tocol gives excellent results. Expansion of the training

dataset has significantly increased the number of training

attributes in the database and should thereby improve the

prediction quality on novel sequences. We expect that

further improvements in our analysis scripts will allow a

higher percentage of available BMRB NMR-STAR files to

be used automatically.

Observation of outliers and referencing errors, even in

relatively recent depositions indicate that more attention can

be paid to ensuring the quality of deposited data. Incorpo-

ration of the prediction tool within NMRViewJ should

facilitate the validation of chemical shift assignments.

Fig. 6 Plot of the root mean squared (rms) prediction error for proton

chemical shifts for 16 different RNA molecules. Structures were

taken from the indicated PDB entries. Four different methods were

used to calculate predicted values. The values for bars labeled BMRB

are from setting the prediction value to the mean shift of the

corresponding atom type as taken from data at the BMRB (Ulrich

et al. 2008). RC are from a ring current shift calculation within

NMRViewJ (Johnson and Blevins 1994) using parameters from (Case

1995), RC-Cal are also a ring current calculation within NMRViewJ,

but with the calibrated ring-current parameters described here, and

SVR prediction are from the output of the SVR calculation described

here
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The prediction model here is based on qualitative

descriptions of the nucleotide sequence and base pairing,

and yet quantitative physicochemical effects such as ring-

current shifts that depend on 3D structure and dynamics

ultimately determine chemical shifts. A fundamental

problem in using structure based shift models is the need to

calibrate the models using very high quality 3D structures.

Calibration of structure-based chemical shift models for

proteins is commonly done with shifts derived from NMR

analysis, but with the structures derived from X-ray crys-

tallography (Shen and Bax 2010). Unfortunately there are

very few X-ray structures of RNA with corresponding

chemical shift sets so this approach is not yet feasible. Our

recalibration of ring-current shifts using an X-ray structure

combined with our secondary-structure based model shifts

shows that 3D based predictions can be improved. Even

with this improvement our secondary structure based

models predict the shifts with higher accuracy. This sug-

gests that the quality of 3D based RNA structure predic-

tions could be significantly improved with an increased

availability of better structural models.
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