a transition from B-DNA to A-DNA (27), and an en masse transition of DNA from B-form to Aform can be induced in bacterial cells, suggesting that the A-form plays an unrecognized role in stabilizing DNA under adverse conditions such as dessication (28). Sequence analysis and structural comparison (with PDB ID 2Z3X) do not show obvious homology, suggesting that these similarities could have arisen as a result of convergent evolution.

### **REFERENCES AND NOTES**

- 1. D. Prangishvili, Annu. Rev. Microbiol. 67, 565-585 (2013).
- 2. D. Prangishvili, R. A. Garrett, E. V. Koonin, Virus Res. 117,
- 52–67 (2006). 3. M. Krupovic, D. Prangishvili, R. W. Hendrix, D. H. Bamford,
- Microbiol. Mol. Biol. Rev. 75, 610–635 (2011). 4. M. Krupovic, M. F. White, P. Forterre, D. Prangishvili, Adv. Virus Res.
- M. Rubovic, W. P. Wine, P. Forence, D. Frangishwi, Adv. Washes
   33–62 (2012).
   D. Prangishvili, T. E. Quax, Curr. Opin. Microbiol. 14, 315–320
- D. Frangishvili, T. E. Quax, Curr. Opin. Interobiol. 14, 515–520 (2011).
   D. Prangishvili et al., Genetics 152, 1387–1396 (1999).
- D. Prangishvill et al., Genetics 132, 1387–1396 (199)
   D. Prangishvill et al., Genetics 132, 1387–1396 (199)
- 7. C. Jaubert et al., Open Biol. 3, 130010 (2013).

## **RNA STRUCTURE**

- M. Lübben, G. Schäfer, J. Bacteriol. 171, 6106–6116 (1989).
   C. Baker-Austin, M. Dopson, Trends Microbiol. 15, 165–171
- (2007).
- 10. A. Bize et al., Proc. Natl. Acad. Sci. U.S.A. **106**, 11306–11311 (2009).
- 11. E. R. Quemin et al., J. Virol. 87, 13379-13385 (2013).
- 12. E. H. Egelman, Ultramicroscopy 85, 225-234 (2000).
- T. Y. Yu, J. Schaefer, J. Mol. Biol. 382, 1031–1042 (2008).
   S. A. Overman et al., Biospectroscopy 4 (suppl.), S47–S56
- (1998).
- W. Earnshaw, S. Casjens, S. C. Harrison, J. Mol. Biol. 104, 387–410 (1976).
- 16. F. S. DiMaio et al., Nat. Methods, 12, 361–365 (2015).
- 17. B. R. Szymczyna et al., Structure 17, 499–507 (2009).
- Y. Song *et al.*, *Structure* **21**, 1735–1742 (2013).
   X. J. Lu, W. K. Olson, *Nucleic Acids Res.* **31**, 5108–5121 (2003).
- 20. P. Setlow, Trends Microbiol. 15, 172–180 (2007).
- B. Setlow, P. Setlow, J. Bacteriol. 177, 4149–4151 (1995).
- 22. C. S. Hayes, P. Setlow, *J. Bacteriol.* **179**, 6020–6027 (1997).
- C. S. Hayes, F. Setlow, J. Bacteriol. 179, 0020–0027 (1997).
   C. S. Hayes, B. Illades-Aguiar, L. Casillas-Martinez, P. Setlow,
- J. Bacteriol. 180, 2694–2700 (1998).
- 24. C. S. Hayes, E. Alarcon-Hernandez, P. Setlow, J. Biol. Chem. 276, 2267–2275 (2001).
- C. S. Hayes, Z. Y. Peng, P. Setlow, J. Biol. Chem. 275, 35040–35050 (2000).

- K. S. Lee, D. Bumbaca, J. Kosman, P. Setlow, M. J. Jedrzejas, Proc. Natl. Acad. Sci. U.S.A. 105, 2806–2811 (2008).
- You, Nati, Acad. Sci. U.S.A. 103, 2800–2811 (2008).
   S. C. Mohr, N. V. Sokolov, C. M. He, P. Setlow, Proc. Natl. Acad.
- *Sci. U.S.A.* **88**, 77–81 (1991). 28. D. R. Whelan *et al., J. R. Soc. Interface* **11**, 20140454 (2014).
- Closty, J. Constructions for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

## ACKNOWLEDGMENTS

This work was supported by NIH grant GM035269 (to E.H.E.). The map and model have been deposited in the Electron Microscopy Data Bank (accession number EMD-6310) and in PDB (ID 339X), respectively. We thank K. Dryden for assistance with the microscopy.

## SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/348/6237/914/suppl/DC1 Materials and Methods Figs. S1 to S5 References (*30–37*) 3 December 2014; accepted 21 April 2015 10.1126/science.aaa4181

# **Structure of the HIV-1 RNA packaging signal**

Sarah C. Keane,<sup>1</sup> Xiao Heng,<sup>1</sup>\* Kun Lu,<sup>1</sup>+ Siarhei Kharytonchyk,<sup>2</sup>

Venkateswaran Ramakrishnan,<sup>1</sup> Gregory Carter,<sup>1</sup> Shawn Barton,<sup>1</sup> Azra Hosic,<sup>1</sup> Alyssa Florwick,<sup>1</sup> Justin Santos,<sup>1</sup> Nicholas C. Bolden,<sup>1</sup> Sayo McCowin,<sup>1</sup> David A. Case,<sup>3</sup> Bruce A. Johnson,<sup>4</sup> Marco Salemi,<sup>5</sup> Alice Telesnitsky,<sup>2</sup>‡ Michael F. Summers<sup>1</sup>‡

The 5' leader of the HIV-1 genome contains conserved elements that direct selective packaging of the unspliced, dimeric viral RNA into assembling particles. By using a <sup>2</sup>H-edited nuclear magnetic resonance (NMR) approach, we determined the structure of a 155-nucleotide region of the leader that is independently capable of directing packaging (core encapsidation signal;  $\Psi^{CES}$ ). The RNA adopts an unexpected tandem three-way junction structure, in which residues of the major splice donor and translation initiation sites are sequestered by long-range base pairing and guanosines essential for both packaging and high-affinity binding to the cognate Gag protein are exposed in helical junctions. The structure reveals how translation is attenuated, Gag binding promoted, and unspliced dimeric genomes selected, by the RNA conformer that directs packaging.

ssembly of HIV-1 particles is initiated by the cytoplasmic trafficking of two copies of the viral genome and a small number of viral Gag proteins to assembly sites on the plasma membrane (1-6). Unspliced, dimeric genomes are efficiently selected for packaging from a cellular milieu that includes a substantial excess of nonviral messenger RNAs (mRNAs) and more than 40 spliced viral mRNAs (7, 8). RNA signals that direct packaging are located primarily within the 5' leader of the genome and are recognized by the nucleocapsid (NC) domains of Gag (4). Transcriptional activation, splicing, and translation initiation are also dependent on elements within the 5' leader, the most conserved region of the genome (9), and there is evidence that these and other activities are temporally

modulated by dimerization-dependent exposure of functional signals (6, 10-13).

Understanding the RNA structures and mechanisms that regulate HIV-1 5' leader function has its basis in phylogenetic, biochemical, nucleotide reactivity, and mutagenesis studies (4). The dimeric leader selected for packaging appears to adopt a highly branched secondary structure, in which there are structurally discrete hairpins and helices that promote transcriptional activation (TAR), transfer RNA (tRNA) primer binding (PBS), packaging ( $\psi$ ), dimer initiation (DIS), splicing (SD), and dimer stability (U5:AUG) (4, 14) (Fig. 1). Although nuclear magnetic resonance (NMR) signals diagnostic of TAR, PBS,  $\psi$ , DIS, U5:AUG, and polyadenylate [poly(A)] helices have been observed in spectra obtained for the full-length dimeric leader (13, 15) (Fig. 1A), signals diagnostic of a putative SD hairpin have not been detected (colored magenta in Fig. 1A) (15), and there is little agreement among more than 20 different structure predictions for residues adjacent to the helices (4). For example, predictions vary for stretches of residues shown by in vivo nucleotide reactivity (16) and cross-linking with immunoprecipitation (17) to reside at or near sites of Gag binding (4). The TAR, poly(A), and PBS hairpins of the HIV-1 leader are not required for efficient encapsidation (15), and a minimal HIV-1 packaging element, the core encapsidation signal ( $\Psi^{CES}$ ), exhibits NC binding properties and NMR spectral features similar to those of the intact 5' leader and is independently capable of directing vector RNAs into viruslike particles (15). To gain insights into the mechanism of HIV-1 genome selection, we determined the structure of  $\Psi^{\text{CES}}$  by NMR.

Contributions of slow molecular rotational motion to NMR relaxation were minimized by substituting the dimer-promoting GC-rich loop of the  $\Psi^{CES}$  DIS hairpin by a GAGA tetraloop (Fig. 1A). This prevented dimerization (Fig. 1B) but did not affect NC binding (Fig. 1C) or nuclear Overhauser effect spectroscopy (NOESY) NMR spectral patterns (18), indicating that the modified RNA retains

<sup>1</sup>Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA. <sup>2</sup>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA. <sup>3</sup>Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. <sup>4</sup>One Moon Scientific, Incorporated, 839 Grant Avenue, Westfield, NJ 07090, USA, and City University of New York (CUNY) Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA. <sup>5</sup>Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.

\*Present address: Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA. †Present address: Regeneron Pharmaceuticals, Incorporated, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA. **‡Corresponding author. E-mail:** summers@hhmi.umbc.edu (M.F.S.); ateles@umich.edu (A.T.) the structure of the native dimer. Nonexchangeable aromatic and ribose  $H_1$ ',  $H_2$ ', and  $H_3$ ' <sup>1</sup>H NMR signals were assigned for nucleotides of the U5:AUG, lower-PBS, DIS, and  $\psi$  helices by sequential residue analysis of two-dimensional (2D) NOESY spectra obtained for nucleotidespecific <sup>2</sup>H-labeled samples (*18–20*) (Fig. 1D). Very-long-range A-H<sub>2</sub> NOEs (<sup>1</sup>H-<sup>1</sup>H distances up to ~7 Å) were detected in spectra of highly deuterated samples (Fig. 1E) [as observed for proteins (*21*)], facilitating assignments.

NMR signals that could not be assigned by nucleotide-specific labeling were identified by a fragmentation-based segmental <sup>2</sup>H-labeling approach that we developed, in which differentially labeled 5' and 3' fragments of  $\Psi^{CES}$  were prepared separately and noncovalently annealed (Fig. 2, A and B, and fig. S1). The dimer-promoting loop of the DIS hairpin served as the fragmentation site and was substituted by a short stretch of intermolecular G:C base pairs (Fig. 2A). Differential <sup>2</sup>H labeling afforded the following fragmentannealed RNAs (fr- $\Psi^{CES}$ ; denoted 5' fragment:3' fragment- $\Psi^{CES}$ ; D, perdeuterated fragment; superscripts denote sites of protonation, all other sites deuterated; e.g., G, fully protonated guanosines, A<sup>2r</sup>, adenosines protonated at C<sub>2</sub> and ribose carbons):  $A^{2r}$ :  $U^r$ - $\Psi^{CES}$ ,  $A^{2r}C^r$ :  $U^r$ - $\Psi^{CES}$ ,  $G^r$ :  $A^{2r}C^r$ - $\Psi^{CES}$ , D:  $A^{2r}C^r$ - $\Psi^{CES}$ , A: D- $\Psi^{CES}$ , and D: A- $\Psi^{CES}$  (fig. S1). Except for residues at the sites of substitution, the NMR spectra of the fr- $\Psi^{CES}$  RNAs were consistent with those of the parent, nonfragmented RNA. For example, NOEs that correlate A124-H2 with cytosine and uridine H1 protons in 2D NOESY spectra obtained for nonfragmented  $A^{2r}C^{r}-\Psi^{CES}$ A<sup>2r</sup>U<sup>r</sup>-Ψ<sup>CES</sup>, and A<sup>2r</sup>C<sup>r</sup>U<sup>r</sup>-Ψ<sup>CES</sup> samples were also detected in spectra obtained for fragment-annealed A2r:Ur-WCES and A2rCr:Ur-WCES constructs, indicating that A124 resides near a cytosine (C125) in the 5' fragment and a uridine (U295) in the 3' fragment (Fig. 2C). More than 80 long-range and sequential A-H<sub>2</sub> NOEs were identified by using the <sup>2</sup>H-edited NMR approach (Fig. 2E). The <sup>1</sup>H NMR assignments were validated by NOE cross peak pattern redundancy and database chemical shift analyses (18, 22) (fig. S2).

The NMR data indicate that residues proximal to the major splice donor site do not form a hairpin but instead participate in long-range base pairing within an extended DIS stem and a short helical segment, H1 (Fig. 2E). To determine whether this secondary structure is also adopted by the native 5' leader, we obtained NOESY data for dimeric, <sup>2</sup>H-labeled 5' leader constructs. Adenosine-H<sub>2</sub> signals diagnostic of the U5:AUG, DIS, PBS, and  $\Psi$  helices were observed in spectra obtained for the native leader ([5'-L]2), as expected (15). However, signals diagnostic of H1 were only detectable upon removal of the upper PBS loop (substituted by a GAGA tetraloop;  $[5'-L^{\Delta PBS}]_2$ ), which eliminated broad upper PBS signals that overlapped with the A124-H2 signal of H1 (Fig. 2D). This construct exhibits dimerization, NC binding, and NMR properties similar to those of the intact leader (15) and directs both noncompetitive (15) and competitive RNA packaging with near-wild-type efficiency [94  $\pm$  4% and 93  $\pm$  18%, respectively (reported as mean  $\pm$  standard deviation)] (Fig. 2F). Thus, the secondary structure observed for  $\Psi^{\rm CES}$ , including the H1 helix, is also adopted by the 5' leader.

NOE-restrained structure calculations (18) reveal that  $\Psi^{CES}$  adopts a tandem three-way junction structure (Fig. 3, A to C, and fig. S3). The overall shape is quasi-tetrahedral, with the U5: AUG, H1, and  $\psi$  helices forming a plane that is nearly perpendicular to the plane formed by the H1, PBS, and DIS helices (Fig. 3A). Splice-site residues G289 and G290 are base-paired with C229 and U228, respectively; adjacent residues are base-paired within or near the H1-PBS-DIS (three-way-2) junction (Fig. 3, B to D); and residues of

AUG are base-paired within the U5:AUG-H1- $\Psi$  (three-way-1) junction (Fig. 3, B and D). A227 to U291 forms an extended DIS hairpin with two internally stacked but nonpaired guanosines (G272 and G273) and a G240(syn):G278(anti)-G241(anti) base triple. Sequentially stacked pyrimidines (U230\*U288 and C231\*C287) exhibit broad line widths indicative of millisecond time scale conformational exchange (Fig. 3E). These residues appear to function as a flexible hinge that connects the extended DIS hairpin with the tandem three-way junction (Fig. 3D). U307 to G330 forms an extended  $\psi$ -hairpin structure that contains three noncanonical base pairs [G310(anti)\*A327(anti), G328\*U309, G329\*U308], a stacked A-A bulge



**Fig. 1. HIV-1 5' leader and \Psi^{CES} RNA construct.** (**A**) Predicted secondary structure of the HIV-1 (NL4-3 strain) 5' leader (*16*); gray shading denotes elements detected in the intact leader by NMR (*13, 15*); dark letters denote  $\Psi^{CES}$  (nonnative residues colored red; see text). (**B** and **C**) Substitution of the native DIS loop residues (DIS-native) by GAGA (DIS-GAGA) prevents dimerization (B) but does not affect NC binding (C). ppm, parts per million. (**D**) Representative NOESY spectra for G<sup>8</sup>A- $\Psi^{CES}$  (black) and G- $\Psi^{CES}$  (green); lines connect H<sub>8</sub> (vertical labels) and H<sub>1</sub><sup>-</sup> (horizontal labels) signals. (**E**) Representative very-long-range NOE (A268-H<sub>2</sub> to C252-H<sub>1</sub><sup>-</sup>; ~7 Å separation) obtained for A<sup>2r</sup>C<sup>r</sup>- $\Psi^{CES}$ .



Fig. 2. Fragmentation-based <sup>2</sup>H-edited NMR approach and observed  $\Psi^{\text{CES}}$  secondary struc**ture.** (A) The DIS loop of  $\Psi^{CES}$  served as the fragmentation site and was substituted by a stretch of intermolecular G-C base pairs. (B) Fragmentannealing efficiency as measured by native agarose gel electrophoresis. (C) The 2D NOESY spectra of uniformly labeled A<sup>2r</sup>C<sup>r</sup>-, A<sup>2r</sup>U<sup>r</sup>-, and A<sup>2r</sup>C<sup>r</sup>U<sup>r</sup>-Ψ<sup>CES</sup> and segmentally labeled fr-A<sup>2r</sup>:U<sup>r</sup>- and fr-A<sup>2r</sup>C<sup>r</sup>:  $\mathsf{U}^{\mathrm{r}}\text{-}\Psi^{\mathrm{CES}}$  samples used to make long-range NOE assignments. (D) Similarities in NOESY spectra obtained for A<sup>2r</sup>C<sup>r</sup>U<sup>r</sup>-labeled [5'-L<sup> $\Delta$ PBS</sup>]<sub>2</sub> and  $\Psi$ <sup>CES</sup> confirm that the tandem three-way junction structure is present in both constructs. (E) NMR-derived secondary structure of  $\Psi^{CES}$ . Black and blue arrows denote A-H<sub>2</sub> NOEs observable in  $\Psi^{CES}$  and fr- $\Psi^{CES}$ samples, respectively; red arrows highlight NOEs shown in (C) and (D); thin arrows denote very-longrange NOEs. (F) Packaging of native HIV-1<sub>NI 4-3</sub> 5'-L and 5'-L^{\Delta PBS} RNAs under competition conditions assayed by means of ribonuclease protection. P, undigested probe; M, RNA sizes marker. Lanes 1 and 2 show native HIV-1<sub>NI 4-3</sub> helper versus test vectors containing 5'-L<sup> $\Delta$ PBS</sup> (1) or native HIV-1<sub>NL4-3</sub> (2). Lane 3 contains HIV- $1_{NL4-3}$  helper expressed without test RNA. Lane 4 is mock transfected cells. Samples obtained from transfected cells (Cells) or viral-containing media (Virus) are indicated. Bands corresponding to host 7SL RNA, HIV-1<sub>NI 4-3</sub> helper RNA ( $\Psi^+$ ), and copackaged test RNAs (Test) are labeled.

C299 C300 G119 A303 4304 293 DIS A332 G333 G289 U118 U11 **A**334 C229 G335 C127 G221 PBS 336 D Ε DIS C243 5.2 G282 C287 C231 Con the second PBS U230 C236 <sup>1</sup>H, ppm 284 C300 A296 G328 G105 6.0 A31 A319 U5:AUG C344 ψ 8.0 7.9 -G320 U5:AUG <sup>1</sup>H, ppm

Fig. 3. Three-dimensional structure of  $\Psi^{CES}$ . (A) Ensemble of 20 refined structures (residues 105 to 344 shown). (B and C) Expanded views of the (B) three-way-1 and (C) three-way-2 junctions. (D) Surface representation of  $\Psi^{CES}$  highlighting U5 (blue):AUG (green) base pairing and the integral participation of SD residues (pink) in the tandem threeway junction structure. (E) Severe line broadening indicative of slow (millisecond) conformational averaging was observed for stacked, mismatched pyrimidines in the extended DIS stem [yellow in (D); broadened C287-H<sub>1</sub>' signal boxed in (E)]. NOE patterns and sharp NMR signals also indicate that the  $\psi$  hairpin loop is unstructured [red in (D)].

[A311(anti)-A326(anti)] (Fig. 2E), and a flexible GAGG loop (Fig. 3D). Adenosines A302 to A305 exhibit pseudo A-form stacking but are not basepaired (Fig. 3B), which supports proposals that genomic adenosine enrichment occurs primarily at non-base-paired sites (23). A302 and A303 also make A-minor contacts with the U5:AUG helix (Fig. 3B).

To determine whether the tandem three-way junction is evolutionarily conserved, we analyzed published HIV-1 leader sequences that contained full coverage of the 5' untranslated region (278 total sequences). Representatives from B, C, and F1 subtypes were included in the analysis (18). Of the 48 base-paired nucleotides at or near the three-way junction, 31 were either strictly (16 sites) or very highly (>99%, 15 sites) conserved, and 13 displayed high (90.2% to 98.9%) identity (table S2). Only 11 of 126 substitutions resulted in loss of base pairing. The remaining four sites- $A^{227}$ ,  $G^{279}$ ,  $A^{286}$ , and  $U^{288}$ —exhibited significant variation, ranging from 12%  $(\mathrm{U}^{288})$  to 50.3% (A<sup>227</sup>). Most changes mapped to terminal branches of the  $\Psi^{\text{CES}}$  phylogeny. Thus, the tandem threeway junction structure is highly conserved, and the rare variations that disrupt base pairing are due to transient polymorphisms.

The PBS, DIS, and  $\psi$  helices of  $\Psi^{CES}$  are consistent with models derived from nucleotide reactivity experiments (4), but the SD structure differs significantly. Recent in-gel chemical probing of resolved monomeric and dimeric leader RNAs (24), and probing studies under solution conditions that favor either the monomeric or dimeric species (25), showed that SD loop residues are relatively unreactive in the dimeric RNA, consistent with the  $\Psi^{CES}$  structure. Pseudo-free energy calculations indicate that the in-gel reactivity data for the dimeric leader (24) are in better agreement with the  $\Psi^{\text{CES}}$  NMR structure than the proposed model [~25% lower experimental pseudo-free energy (18); fig. S4]. These findings support proposals that variations in structure predictions are at least partly due to site-specific structural heterogeneity associated with the monomer-dimer equilibrium (13, 24).

HIV-1 NC binds with high affinity to oligonucleotides that contain exposed guanosines (4, 26, 27).  $\Psi^{\text{CES}}$  contains five unpaired Gs (excluding the nonnative GAGA tetraloops), a GGG base triple in the DIS stem, and five additional guanosine mismatches clustered at or near the two threeway junctions (G\*U, G\*A, or G\*G) that could serve as NC binding sites (Fig. 4A). Potential contributions of these "junction guanosines" to NC binding were tested by isothermal titration calorimetric studies of G-to-A–substituted  $\Psi^{\text{CES}}$  RNAs. Free energy calculations indicate that these substitutions, which include three G\*U to A-U substitutions, should not alter the secondary structure of the RNA (18). Replacement of the  $\psi$  GGAG loop by GAAA eliminated one NC binding site, as expected (27), and substitution of the three-way-1 junction guanosines by adenosines (G116A/G333A/ G328A/G329A/G331A) eliminated three additional NC sites (Fig. 4B). Mutation of the unpaired (G226, G292, and G294) and mismatched (G224)

three-wav-2 junction guanosines to adenosines eliminated one NC binding site (Fig. 4B). The influence of these guanosines on RNA encapsidation was evaluated by using a competitive in situ RNA packaging assay. Human embryonic kidney 293T cells were co-transfected with plasmids that produce vector RNAs containing the wild-type  $(\Psi^+, \text{ which also encodes for viral proteins})$  and mutant (Test) leader sequences (18). When coexpressed at similar levels,  $\Psi^+$  and Test vector RNAs with native leader sequences were packaged into HIV-1 virus-like particles with similar efficiencies (Fig. 4C). In contrast, significant packaging defects were observed upon G-to-A mutation of the three-way-2 junction guanosines (17%  $\pm$  2%), the  $\psi\text{-loop}$  and three-way-1 junction guanosines (10%  $\pm$  2%), and all junction and  $\psi\text{-loop}$  guanosines (5%  $\pm$  1%) (Fig. 4C). Our findings indicate that the tandem three-way junction serves as a scaffold for exposing clusters of unpaired or weakly paired junction guanosines, thereby enabling their binding to the zinc knuckle domains of NC.

The  $\Psi^{\text{CES}}$  structure explains biochemical, nucleotide reactivity, and phylogenetic results and suggests a mechanism by which the 5' leader structure regulates translation and splicing (4). In vitro translational activity and chemical reactivity of the AUG residues are suppressed upon dimerization (28), and this can be attributed to sequestration of the 5' end of the gag open reading frame within the three-way-1 junction (Fig. 3D). Enhanced in vitro translational activity caused by mutations immediately downstream of the major splice donor site ( $\Delta$ A296/A301U and A293C/U295C/ $\Delta$ G298) can be explained by





destabilization of the H1 helix and, for  $\Delta A296/$ A301U, stabilization of the SD hairpin (29), both of which should favor the monomer. Mutations in AUG that inhibit genome dimerization and suppress packaging (30, 31) are expected to disrupt base pairing in the U5:AUG helix and  $\psi$ -hairpin stem, thereby destabilizing the tandem three-way junction structure required for Gag binding. In vitro splicing activity is also attenuated by dimerization (12, 32), and this can be attributed to sequestration of the major splicesite recognition sequence within the three-way-2 junction. Antisense oligonucleotides with complementarity to the SD loop inhibit dimerization, and this is likely due to their ability to competitively block formation of the tandem three-way junction (25).

The  $\Psi^{CES}$  structure also explains the exquisite selectivity of HIV-1 to package its unspliced genome (1, 2). Residues immediately downstream of the major splice site are base-paired within the H1 helix and are thus integral to the formation of the tandem three-way junction structure. Although unspliced and spliced HIV-1 mRNAs contain identical 5' sequences (G1 to G289), differences in spliced mRNA sequences derived from 3' exons would preclude formation of the packaging competent junction structure. Similarly, because SD appears to exist as a hairpin in the monomeric, unspliced 5' leader (12), it is likely that monomeric genomes are also ignored during virus assembly because they do not adopt the tandem three-way junction structure.

Compared with the proteins of HIV-1, structural information for the viral nucleic acids is sparse. RNAs in general are vastly underrepresented in the structural data banks (99,000 proteins versus 2700 RNA structures), partly because of NMR technical challenges and difficulties obtaining suitable crystals for x-ray diffraction (*19, 20*). The fr-RNA <sup>2</sup>H-edited NMR approach enables efficient segmental labeling without requiring enzymatic ligation. Given the ubiquity of hairpin elements that can serve as fragmentation or annealing sites, this method should be generally applicable to modest-sized RNAs (~160 nucleotides).

#### **REFERENCES AND NOTES**

- 1. J. M. Coffin, S. H. Hughes, H. E. Varmus, Eds., Retroviruses
- (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1997).
   R. Berkowitz, J. Fisher, S. P. Goff, *Curr. Top. Microbiol. Immunol.*
- 214, 177–218 (1996).
   J. Chen et al., Proc. Natl. Acad. Sci. U.S.A. 106, 13535–13540
- (2009). 4. K. Lu, X. Heng, M. F. Summers, *J. Mol. Biol.* **410**, 609–633
- (2011). 5. N. Jouvenet, S. M. Simon, P. D. Bieniasz, J. Mol. Biol. **410**,
- 501–511 (2011). 6. M. Kuzembayeva, K. Dilley, L. Sardo, W.-S. Hu, *Virology*
- 454-455, 362-370 (2014).
- S. Schwartz, B. K. Felber, D. M. Benko, E. M. Fenyö, G. N. Pavlakis, J. Virol. 64, 2519–2529 (1990).
- 8. O. A. Nikolaitchik et al., PLOS Pathog. 9, e1003249 (2013).
- 9. A. M. Lever, Adv. Pharmacol. 55, 1-32 (2007).
- J.-C. Paillart, M. Shehu-Xhilaga, R. Marquet, J. Mak, *Nat. Rev. Microbiol.* 2, 461–472 (2004).
- 11. J. Greatorex, *Retrovirology* **1**, 22 (2004).
- T. E. M. Abbink, B. Berkhout, J. Virol. 82, 3090–3098 (2008).
- 13. K. Lu et al., Science 334, 242-245 (2011).

- T. E. M. Abbink, B. Berkhout, J. Biol. Chem. 278, 11601–11611 (2003).
- 15. X. Heng et al., J. Mol. Biol. 417, 224–239 (2012).
- 16. K. A. Wilkinson et al., PLOS Biol. 6, e96 (2008).
- 17. S. B. Kutluay et al., Cell 159, 1096-1109 (2014).
- Information on materials and methods is available on Science Online.
- K. Lu, Y. Miyazaki, M. F. Summers, J. Biomol. NMR 46, 113–125 (2010).
- D. Duss, P. J. Lukavsky, F. H. Allain, Adv. Exp. Med. Biol. 992, 121–144 (2012).
- L. M. Koharudin, A. M. Bonvin, R. Kaptein, R. Boelens, J. Magn. Reson. 163, 228–235 (2003).
- Magn. Resol. 103, 228–235 (2003).
   S. Barton, X. Heng, B. A. Johnson, M. F. Summers,
- J. Biomol. NMR 55, 33–46 (2013).
- F. J. van Hemert, A. C. van der Kuyl, B. Berkhout, *RNA Biol.* 10, 211–215 (2013).
- J. C. Kenyon, L. J. Prestwood, S. F. Le Grice, A. M. Lever, Nucleic Acids Res. 41, e174 (2013).
- J. Deforges, N. Chamond, B. Sargueil, *Biochimie* 94, 1481–1489 (2012).
- 26. T. L. South, M. F. Summers, Protein Sci. 2, 3-19 (1993).
- 27. R. N. De Guzman et al., Science 279, 384-388 (1998).
- 28. F. Baudin et al., J. Mol. Biol. 229, 382–397 (1993).
- 29. T. E. Abbink, M. Ooms, P. C. Haasnoot, B. Berkhout,
- Biochemistry 44, 9058–9066 (2005). 30. D. T. Poon, E. N. Chertova, D. E. Ott, Virology 293, 368–378
- (2002).
  31. O. Nikolaitchik, T. D. Rhodes, D. Ott, W.-S. Hu, J. Virol. 80, 4691–4697 (2006).

## **EVOLUTION**

#### J. A. Jablonski, E. Buratti, C. Stuani, M. Caputi, J. Virol. 82, 8038–8050 (2008).

#### ACKNOWLEDGMENTS

This research was supported by grants from the National Institute of General Medical Sciences (NIGMS, R01 GM42561 to M.F.S. and A.T. and P50 GM 103297 to M.S., B.J., and D.A.C.). S.B., N.C.B., and S.M. were supported by a NIGMS grant for enhancing minority access to research careers (MARC U\*STAR 2T34 GM008663), and S.B., J.S., N.C.B., and S.M. were supported by an HHMI undergraduate education grant. We thank the HHMI staff at UMBC for technical assistance and B. Rife (University of Florida) for advice regarding the phylogenetic analysis. The following reagent was obtained through the NIH AIDS Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH: pNL4-3 from M. Martin. Atomic coordinates have been deposited into the Protein Data Bank with accession code 2N1Q. NMR chemical shifts and restraints have been deposited into the Biological Magnetic Resonance Bank with accession code 25571.

#### SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/348/6237/917/suppl/DC1 Materials and Methods Figs. S1 to S4 Tables S1 and S2 References (33–52) 14 February 2015; accepted 22 April 2015 10.1126/science.aaa9266

## Systematic humanization of yeast genes reveals conserved functions and genetic modularity

Aashiq H. Kachroo,<sup>1</sup> Jon M. Laurent,<sup>1</sup> Christopher M. Yellman,<sup>1</sup> Austin G. Meyer,<sup>1,2</sup> Claus O. Wilke,<sup>1,2,3</sup> Edward M. Marcotte<sup>1,2,4</sup>\*

To determine whether genes retain ancestral functions over a billion years of evolution and to identify principles of deep evolutionary divergence, we replaced 414 essential yeast genes with their human orthologs, assaying for complementation of lethal growth defects upon loss of the yeast genes. Nearly half (47%) of the yeast genes could be successfully humanized. Sequence similarity and expression only partly predicted replaceability. Instead, replaceability depended strongly on gene modules: Genes in the same process tended to be similarly replaceable (e.g., sterol biosynthesis) or not (e.g., DNA replication initiation). Simulations confirmed that selection for specific function can maintain replaceability despite extensive sequence divergence. Critical ancestral functions of many essential genes are thus retained in a pathway-specific manner, resilient to drift in sequences, splicing, and protein interfaces.

he ortholog-function conjecture posits that orthologous genes in diverged species perform similar or identical functions (1). The conjecture is supported by comparative analyses of gene-expression patterns, genetic interaction maps, and chemogenomic profiling

\*Corresponding author. E-mail: marcotte@icmb.utexas.edu

(2-6), and it is widely used to predict gene func-

tion across species. However, even if two genes

perform similar functions in different organisms,

it may not be possible to replace one for the oth-

er, particularly if the organisms are widely di-

verged. The extent to which deeply divergent

from a common ancestor approximately 1 bil-

lion years ago (7). They share several thousand

22 MAY 2015 • VOL 348 ISSUE 6237 921

<sup>&</sup>lt;sup>1</sup>Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. <sup>2</sup>Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, TX 78712, USA. <sup>3</sup>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA. <sup>4</sup>Department of Molecular Biosciences, University of Texas at Austin, Austin, Austin, TX 78712, USA



This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 21, 2015 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/348/6237/917.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2015/05/20/348.6237.917.DC1.html This article cites 47 articles. 18 of which can be accessed free: http://www.sciencemag.org/content/348/6237/917.full.html#ref-list-1 This article appears in the following subject collections: Biochemistry http://www.sciencemag.org/cgi/collection/biochem

*Science* (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2015 by the American Association for the Advancement of Science; all rights reserved. The title *Science* is a registered trademark of AAAS.